Python Pandas - 將時間索引轉換為不含有時區的 Series
若要將時間索引轉換為不含有時區的 Series,請使用 datetimeindex.tz_convert(None).to_series()。tz.convert(None) 用於排除時區。
首先,匯入所需的庫 -\n
import pandas as pd
使用週期 5 和頻率為 S(即秒)建立一個時間索引 -\n
datetimeindex = pd.date_range('2021-10-18 07:20:32.261811624', periods=5,
tz='Australia/Adelaide', freq='40S')顯示時間索引 -\n
print("DateTimeIndex...\n", datetimeindex)
將時間索引轉換為 Series。使用“tz_convert()”並將其設定為“None”以排除時區 -\n
print("\nDateTimeIndex to series excluding the TimeZone...\n",
datetimeindex.tz_convert(None).to_series())示例
如下的程式碼 −
import pandas as pd
# DatetimeIndex with period 5 and frequency as S i.e. seconds
# timezone is Australia/Adelaide
datetimeindex = pd.date_range('2021-10-18 07:20:32.261811624', periods=5,
tz='Australia/Adelaide', freq='40S')
# display DateTimeIndex
print("DateTimeIndex...\n", datetimeindex)
# display DateTimeIndex frequency
print("DateTimeIndex frequency...\n", datetimeindex.freq)
# Convert DateTimeIndex to Series
# Use the "tz_convert()" and set it to "None" to exclude the TimeZone
print("\nDateTimeIndex to series excluding the TimeZone...\n",
datetimeindex.tz_convert(None).to_series())輸出
生成以下程式碼 −
DateTimeIndex... DatetimeIndex(['2021-10-18 07:20:32.261811624+10:30', '2021-10-18 07:21:12.261811624+10:30', '2021-10-18 07:21:52.261811624+10:30', '2021-10-18 07:22:32.261811624+10:30', '2021-10-18 07:23:12.261811624+10:30'], dtype='datetime64[ns, Australia/Adelaide]', freq='40S') DateTimeIndex frequency... <40 * Seconds> DateTimeIndex to series excluding the TimeZone... 2021-10-17 20:50:32.261811624 2021-10-17 20:50:32.261811624 2021-10-17 20:51:12.261811624 2021-10-17 20:51:12.261811624 2021-10-17 20:51:52.261811624 2021-10-17 20:51:52.261811624 2021-10-17 20:52:32.261811624 2021-10-17 20:52:32.261811624 2021-10-17 20:53:12.261811624 2021-10-17 20:53:12.261811624 Freq: 40S, dtype: datetime64[ns]
廣告
資料結構
網路
關係資料庫管理系統
作業系統
Java
iOS
HTML
CSS
Android
Python
C 語言程式設計
C++
C#
MongoDB
MySQL
JavaScript
PHP