在 NumPy 中對由“indices”指定的元素執行運算元的非緩衝就地操作


要在 Python NumPy 中對由“indices”指定的元素執行運算元的非緩衝就地操作,請使用 **numpy.ufunc.at()** 方法。

**numpy.ufunc** 包含逐元素對整個陣列進行操作的函式。ufunc是用C語言編寫的(為了速度),並透過NumPy的ufunc功能連結到Python。通用函式(或簡稱ufunc)是在元素級對ndarray進行操作的函式,支援陣列廣播、型別轉換和許多其他標準特性。也就是說,ufunc是“向量化”的函式包裝器,它接受固定數量的特定輸入併產生固定數量的特定輸出。

步驟

首先,匯入所需的庫 -

import numpy as np

建立兩個一維陣列 -

arr1 = np.array([10, 20, 30, 40, 50])
arr2 = np.array([15, 25, 35, 45, 55])

顯示陣列 -

print("Array 1...
", arr1) print("
Array 2...
", arr2)

獲取陣列的型別 -

print("
Our Array 1 type...
", arr1.dtype) print("
Our Array 2 type...
", arr2.dtype)

獲取陣列的維度 -

print("
Our Array 1 Dimensions...
",arr1.ndim) print("
Our Array 2 Dimensions...
",arr2.ndim)

要在 Python NumPy 中對由“indices”指定的元素執行運算元的非緩衝就地操作,請使用 numpy.ufunc.at() 方法。

設定負值。np.negative.at() 用於將特定專案設定為負值。這裡,第二個引數是索引,即用於索引第一個運算元的陣列狀索引物件或切片物件。如果第一個運算元具有多個維度,則索引可以是陣列狀索引物件或切片物件的元組。

np.negative.at(arr1, [0, 1])
print("
Set negative values...
", arr1)

設定正值。np.add.at() 用於將特定專案設定為增量值 -

np.add.at(arr2, [0, 1], 1)
print("
Set positive values...
", arr2)

示例

import numpy as np

# The numpy.ufunc has functions that operate element by element on whole arrays.
# ufuncs are written in C (for speed) and linked into Python with NumPy’s ufunc facility

# Create two 1d arrays
arr1 = np.array([10, 20, 30, 40, 50])
arr2 = np.array([15, 25, 35, 45, 55])

# Display the arrays
print("Array 1...
", arr1) print("
Array 2...
", arr2) # Get the type of the arrays print("
Our Array 1 type...
", arr1.dtype) print("
Our Array 2 type...
", arr2.dtype) # Get the dimensions of the Arrays print("
Our Array 1 Dimensions...
",arr1.ndim) print("
Our Array 2 Dimensions...
",arr2.ndim) # To perform unbuffered in place operation on operand for elements specified by ‘indices, use the numpy.ufunc.at() method in Python Numpy # Set negative values # The np.negative.at() is used to set specific items to negative values # Here, the 2nd parameter are indices i.e. Array like index object or slice object for indexing into # first operand. If first operand has multiple dimensions, indices can be a tuple of array like index objects or slice objects. np.negative.at(arr1, [0, 1]) print("
Set negative values...
", arr1) # Set positive values # The np.add.at() is used to set specific items to increment values np.add.at(arr2, [0, 1], 1) print("
Set positive values...
", arr2)

輸出

Array 1...
[10 20 30 40 50]

Array 2...
[15 25 35 45 55]

Our Array 1 type...
int64

Our Array 2 type...
int64

Our Array 1 Dimensions...
1

Our Array 2 Dimensions...
1

Set negative values...
[-10 -20 30 40 50]

Set positive values...
[16 26 35 45 55]

更新於: 2022年2月7日

141 次檢視

開啟你的 職業生涯

透過完成課程獲得認證

開始學習
廣告

© . All rights reserved.