下列哪個是多項式?
(A) $\frac{x^{2}}{2}-\frac{2}{x^{2}}$
(B) $\sqrt{2 x}-1$
(C) $ x^{2}+\frac{3 x^{\frac{3}{2}}}{\sqrt{x}}$
已知
給定的表示式為:
(A) $\frac{x^{2}}{2}-\frac{2}{x^{2}}$
(B) $\sqrt{2 x}-1$
(C) $ x^{2}+\frac{3 x^{\frac{3}{2}}}{\sqrt{x}}$
要求
我們必須找出哪個給定的表示式是多項式。
解答
多項式:多項式是指每個項都是一個常數乘以一個變數的整數次冪的表示式。
(A) $\frac{x^{2}}{2}-\frac{2}{x^{2}}$ 不是多項式,因為項 $- \frac{2}{x^2}$ 等於 $-2x^{-2}$,在這個項中,變數 x 的冪為 $-2$,它不是整數。
所以,$\frac{x^{2}}{2}-\frac{2}{x^{2}}$ 不是多項式。
(B) $\sqrt{2 x}-1$
不是多項式,因為項 $\sqrt{2x}$ 等於 $\sqrt{2} x^{\frac{1}{2}}$,其指數不是整數。
所以,$\sqrt{2 x}-1$ 不是多項式。
(C) $ x^{2}+\frac{3 x^{\frac{3}{2}}}{\sqrt{x}} = x^2 + 3 x^{\frac{3}{2} - \frac{1}{2}} = x^2 + 3x$。這裡,項中變數 (x) 的冪都是整數。
因此,選項 (C) $ x^{2}+\frac{3 x^{\frac{3}{2}}}{\sqrt{x}}$ 是一個多項式。
因為項 √2x 等於 √2x1/2,在這個項中,變數 x 的冪為 1/2,它不是整數。所以,√2x -1 不是多項式。
- 相關文章
- 如果 $\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}=x,\ \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}=y$,求 $x^{2}+y^{2}+x y$ 的值。
- 如果 \( x-\frac{1}{x}=3+2 \sqrt{2} \),求 \( x^{3}- \frac{1}{x^{3}} \) 的值。
- 解關於 x 的方程:$\frac{1}{x}+\frac{2}{2x-3}=\frac{1}{x-2}, x≠0, \frac{3}{2}, 2$
- 計算下列代數表示式的和:(i) \( 3 a^{2} b,-4 a^{2} b, 9 a^{2} b \)(ii) \( \frac{2}{3} a, \frac{3}{5} a,-\frac{6}{5} a \)(iii) \( 4 x y^{2}-7 x^{2} y, 12 x^{2} y-6 x y^{2},-3 x^{2} y+5 x y^{2} \)(iv) \( \frac{3}{2} a-\frac{5}{4} b+\frac{2}{5} c, \frac{2}{3} a-\frac{7}{2} b+\frac{7}{2} c, \frac{5}{3} a+ \) \( \frac{5}{2} b-\frac{5}{4} c \)(v) \( \frac{11}{2} x y+\frac{12}{5} y+\frac{13}{7} x,-\frac{11}{2} y-\frac{12}{5} x-\frac{13}{7} x y \)(vi) \( \frac{7}{2} x^{3}-\frac{1}{2} x^{2}+\frac{5}{3}, \frac{3}{2} x^{3}+\frac{7}{4} x^{2}-x+\frac{1}{3} \) \( \frac{3}{2} x^{2}-\frac{5}{2} x-2 \)
- 如果 \( x=\frac{1}{3+2 \sqrt{2}}, \) 則 \( x-\frac{1}{x} \) 的值是
- 如果 $x\ =\ 2\ +\ 3\sqrt{2}$,求 $x\ + \frac{4}{x}$ 的值。
- $\frac{x-1}{2}+\frac{2 x-1}{4}=\frac{x-1}{3}-\frac{2 x-1}{6}$。
- 解關於 x 的方程:$\frac{1}{( x-1)( x-2)} +\frac{1}{( x-2)( x-3)} =\frac{2}{3} \ ,\ x\neq 1,2,3$
- 下列哪個不是多項式?(a) $x^{2}+\sqrt{2} x+3$ (b) $x^{3}+3 x^{2}-3$ (c) $6 x+4$ (d) $x^{2}-\sqrt{2 x}+6$
- 用因式分解法解下列二次方程:$\frac{x+1}{x-1}+\frac{x-2}{x+2}=4-\frac{2x+3}{x-2}, x ≠ 1, -2, 2$
- 將下列方程組化為線性方程組求解:(i) \( \frac{1}{2 x}+\frac{1}{3 y}=2 \)\( \frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6} \)(ii) \( \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \)\( \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1 \)(iii) \( \frac{4}{x}+3 y=14 \)\( \frac{3}{x}-4 y=23 \)(iv) \( \frac{5}{x-1}+\frac{1}{y-2}=2 \)\( \frac{6}{x-1}-\frac{3}{y-2}=1 \)(v) \( \frac{7 x-2 y}{x y}=5 \)\( \frac{8 x+7 y}{x y}=15 \)(vi) \( 6 x+3 y=6 x y \)\( 2 x+4 y=5 x y \)(vii) \( \frac{10}{x+y}+\frac{2}{x-y}=4 \)\( \frac{15}{x+y}-\frac{5}{x-y}=-2 \)(viii) \( \frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} \)\( \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8} \).
- 解下列方程:\( \frac{3}{4}(7 x-1)-\left(2 x-\frac{1-x}{2}\right)=x+\frac{3}{2} \)
- 解關於 x 的方程:\( \frac{3 x-2}{3}+\frac{2 x+3}{2}=x+\frac{7}{6} \)
- 驗證下列值是否為相應多項式的零點。(i) \( p(x)=3 x+1, x=-\frac{1}{3} \)(ii) \( p(x)=5 x-\pi, x=\frac{4}{5} \)(iii) \( p(x)=x^{2}-1, x=1,-1 \)(iv) \( p(x)=(x+1)(x-2), x=-1,2 \)(v) \( p(x)=x^{2}, x=0 \)(vi) \( p(x)=l x+m, x=-\frac{m}{l} \)(vii) \( p(x)=3 x^{2}-1, x=-\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}} \)(viii) \( p(x)=2 x+1, x=\frac{1}{2} \)
- 解下列方程:如果 $x^{2}+\frac{1}{x^{2}}=3,$ 求 a) $ x-\frac{1}{x}$ b) $x+\frac{1}{x} $