證明:\( \frac{(0.6)^{0}-(0.1)^{-1}}{\left(\frac{3}{8}\right)^{-1}\left(\frac{3}{2}\right)^{3}+\left(-\frac{1}{3}\right)^{-1}}=-\frac{3}{2} \)


已知:

\( \frac{(0.6)^{0}-(0.1)^{-1}}{\left(\frac{3}{8}\right)^{-1}\left(\frac{3}{2}\right)^{3}+\left(-\frac{1}{3}\right)^{-1}}=-\frac{3}{2} \)

要求:

我們必須證明\( \frac{(0.6)^{0}-(0.1)^{-1}}{\left(\frac{3}{8}\right)^{-1}\left(\frac{3}{2}\right)^{3}+\left(-\frac{1}{3}\right)^{-1}}=-\frac{3}{2} \).

解答

我們知道:

$(a^{m})^{n}=a^{m n}$

$a^{m} \times a^{n}=a^{m+n}$

$a^{m} \div a^{n}=a^{m-n}$

$a^{0}=1$

因此:

左邊 $=\frac{(0.6)^{0}-(0.1)^{-1}}{(\frac{3}{8})^{-1} \times(\frac{3}{2})^{3}+(-\frac{1}{3})^{-1}}$

$=\frac{1-(\frac{1}{10})^{-1}}{(\frac{8}{3})^{1} \times(\frac{3}{2})^{3}+(\frac{-3}{1})^{1}}$

$=\frac{1-10^{1}}{\frac{8}{3} \times \frac{27}{8}+(\frac{-3}{1})}$

$=\frac{-9}{9-\frac{3}{1}}$

$=\frac{-9}{6}$

$=\frac{-3}{2}$

$=$ 右邊

證畢。      

更新於:2022年10月10日

66 次瀏覽

開啟你的職業生涯

完成課程獲得認證

開始學習
廣告
© . All rights reserved.