計算
\( \frac{\sin 50^{\circ}}{\cos 40^{\circ}}+\frac{\operatorname{cosec} 40^{\circ}}{\sec 50^{\circ}}-4 \cos 50^{\circ} \operatorname{cosec} 40^{\circ} \)


已知

\( \frac{\sin 50^{\circ}}{\cos 40^{\circ}}+\frac{\operatorname{cosec} 40^{\circ}}{\sec 50^{\circ}}-4 \cos 50^{\circ} \operatorname{cosec} 40^{\circ} \)

要求

我們需要計算\( \frac{\sin 50^{\circ}}{\cos 40^{\circ}}+\frac{\operatorname{cosec} 40^{\circ}}{\sec 50^{\circ}}-4 \cos 50^{\circ} \operatorname{cosec} 40^{\circ} \).

解:

我們知道:

sin (90° - θ) = cos θ

cosec (90° - θ) = sec θ

cos (90° - θ) = sin θ

sin θ × cosec θ = 1

因此:

$\frac{\sin 50^{\circ}}{\cos 40^{\circ}}+\frac{\operatorname{cosec} 40^{\circ}}{\sec 50^{\circ}}-4 \cos 50^{\circ} \operatorname{cosec} 40^{\circ}=\frac{\sin (90^{\circ}-40^{\circ})}{\cos 40^{\circ}}+\frac{\operatorname{cosec} (90^{\circ}-50^{\circ})}{\sec 50^{\circ}}-4 \cos (90^{\circ}-40^{\circ}) \operatorname{cosec} 40^{\circ}$

$=\frac{\cos 40^{\circ}}{\cos 40^{\circ}}+\frac{\sec 50^{\circ}}{\sec 50^{\circ}}-4 \sin 40^{\circ} \operatorname{cosec} 40^{\circ}$

$=1+1-4(1)$

$=2-4$

$=-2$

因此,$\frac{\sin 50^{\circ}}{\cos 40^{\circ}}+\frac{\operatorname{cosec} 40^{\circ}}{\sec 50^{\circ}}-4 \cos 50^{\circ} \operatorname{cosec} 40^{\circ}=-2$

更新於:2022年10月10日

67 次瀏覽

開啟你的職業生涯

完成課程獲得認證

開始學習
廣告