計算下列乘積
$(\frac{-10}{3}a^{2}b^{2})(\frac{6}{5}a^{3}b^{2})$
解答
$(\frac{-10}{3}a^{2}b^{2})(\frac{6}{5}a^{3}b^{2})$
= $(\frac{-10}{3}\times\frac{6}{5})$$a^{5}b^{4}$
=$-4$$a^{5}b^{4}$
- 相關文章
- 從\( \frac{x^{3}}{3}-\frac{5}{2} x^{2}+ \) \( \frac{3}{5} x+\frac{1}{4} \)中減去 (i) \( \frac{6}{5} x^{2}-\frac{4}{5} x^{3}+\frac{5}{6}+\frac{3}{2} x \);(ii) 從\( \frac{1}{3} a^{3}-\frac{3}{4} a^{2}- \) \( \frac{5}{2} \)中減去\( \frac{5 a^{2}}{2}+\frac{3 a^{3}}{2}+\frac{a}{3}-\frac{6}{5} \);(iii) 從\( \frac{7}{2}-\frac{x}{3}- \) \( \frac{x^{2}}{5} \)中減去\( \frac{7}{4} x^{3}+\frac{3}{5} x^{2}+\frac{1}{2} x+\frac{9}{2} \);(iv) 從\( \frac{1}{3}-\frac{5}{3} y^{2} \)中減去\( \frac{y^{3}}{3}+\frac{7}{3} y^{2}+\frac{1}{2} y+\frac{1}{2} \);(v) 從\( \frac{3}{2} a b-\frac{7}{4} a c- \) \( \frac{5}{6} b c \)中減去\( \frac{2}{3} a c-\frac{5}{7} a b+\frac{2}{3} b c \)
- 將下列代數表示式相加:(i) \( 3 a^{2} b,-4 a^{2} b, 9 a^{2} b \);(ii) \( \frac{2}{3} a, \frac{3}{5} a,-\frac{6}{5} a \);(iii) \( 4 x y^{2}-7 x^{2} y, 12 x^{2} y-6 x y^{2},-3 x^{2} y+5 x y^{2} \);(iv) \( \frac{3}{2} a-\frac{5}{4} b+\frac{2}{5} c, \frac{2}{3} a-\frac{7}{2} b+\frac{7}{2} c, \frac{5}{3} a+ \) \( \frac{5}{2} b-\frac{5}{4} c \);(v) \( \frac{11}{2} x y+\frac{12}{5} y+\frac{13}{7} x,-\frac{11}{2} y-\frac{12}{5} x-\frac{13}{7} x y \);(vi) \( \frac{7}{2} x^{3}-\frac{1}{2} x^{2}+\frac{5}{3}, \frac{3}{2} x^{3}+\frac{7}{4} x^{2}-x+\frac{1}{3} \) \( \frac{3}{2} x^{2}-\frac{5}{2} x-2 \)
- 化簡下列式子:\( \frac{4 a b^{2}\left(-5 a b^{3}\right)}{10 a^{2} b^{2}} \)
- 解下列方程:a) $ 2 y+\frac{5}{2}=\frac{37}{2} $ b) $ 5 t+28=10 $ c) $ \frac{a}{5}+3=2 $
- 減法運算:(i) 從$ 12xy$中減去$-5xy$;(ii) 從$-7a^2$中減去$2a^2$;(iii) 從\( 3 a-5 b \)中減去\( 2 a-b \);(iv) 從\( 4 x^{3}+x^{2}+x+6 \)中減去\( 2 x^{3}-4 x^{2}+3 x+5 \);(v) 從\( \frac{1}{3} y^{3}+\frac{5}{7} y^{2}+y-2 \)中減去\( \frac{2}{3} y^{3}-\frac{2}{7} y^{2}-5 \);(vi) 從\( \frac{2}{3} x+\frac{3}{2} y-\frac{4}{3} z \)中減去\( \frac{3}{2} x-\frac{5}{4} y-\frac{7}{2} z \);(vii) 從\( \frac{2}{3} x^{2} y+\frac{3}{2} x y^{2}- \) \( \frac{1}{3} x y \)中減去\( x^{2} y-\frac{4}{5} x y^{2}+\frac{4}{3} x y \);(viii) 從\( \frac{3}{5} b c-\frac{4}{5} a c \)中減去\( \frac{a b}{7}-\frac{35}{3} b c+\frac{6}{5} a c \)
- 化簡下列式子:$\frac{a^3-b^3}{a^2+ab+b^2}$
- 計算下列式子:$\frac{-2}{3} \times \frac{3}{5} + \frac{5}{2} - \frac{3}{5} \times \frac{1}{6}$
- 化簡:(i) \( \frac{-3}{2}+\frac{5}{4}-\frac{7}{4} \);(ii) \( \frac{5}{3}-\frac{7}{6}+\frac{-2}{3} \);(iii) \( \frac{5}{4}-\frac{7}{6}-\frac{-2}{3} \);(iv) \( \frac{-2}{5}-\frac{-3}{10}-\frac{-4}{7} \);(v) \( \frac{5}{6}+\frac{-2}{5}-\frac{-2}{15} \);(vi) \( \frac{3}{8}-\frac{-2}{9}+\frac{-5}{36} \)
- 解下列方程:(a) $ 2y+\frac{5}{2}=\frac{37}{2}$;(b) $ 5t+28=10$;(c) $ \frac{a}{5}+3=2$;(d) $ \frac{q}{4}+7=5$;(e) $ \frac{5}{2}x=-5$;(f) $ \frac{5}{2}x=\frac{25}{4}$;(g) $ 7m+\frac{19}{2}=13$;(h) $ 6z+10=-2$;(i) $ \frac{3l}{2}=\frac{2}{3}$;(j) $ \frac{2b}{3}-5=3$
- 計算:(a) \( \frac{2}{3}+\frac{1}{7} \);(b) \( \frac{3}{10}+\frac{7}{15} \);(c) \( \frac{4}{9}+\frac{2}{7} \);(d) \( \frac{5}{7}+\frac{1}{3} \);(e) \( \frac{2}{5}+\frac{1}{6} \);(f) \( \frac{4}{5}+\frac{2}{3} \);(g) \( \frac{3}{4}-\frac{1}{3} \);(h) \( \frac{5}{6}-\frac{1}{3} \);(i) \( \frac{2}{3}+\frac{3}{4}+\frac{1}{2} \);(j) \( \frac{1}{2}+\frac{1}{3}+\frac{1}{6} \);(k) \( 1 \frac{1}{3}+3 \frac{2}{3} \);(l) \( 4 \frac{2}{3}+3 \frac{1}{4} \);(m) \( \frac{16}{5}-\frac{7}{5} \);(n) \( \frac{4}{3}-\frac{1}{2} \)
- 將下列分數寫成小數:(a) \( \frac{5}{10} \);(b) \( 3+\frac{7}{10} \);(c) \( 200+60+5+\frac{1}{10} \);(d) \( 70+\frac{8}{10} \);(e) \( \frac{88}{10} \);(f) \( 4 \frac{2}{10} \);(g) \( \frac{3}{2} \);(h) \( \frac{2}{5} \);(i) \( \frac{12}{5} \);(j) \( 3 \frac{3}{5} \);(k) \( 4 \frac{1}{2} \)
- 計算:(a) $\frac{1}{2}$ 的 (i) $2\frac{3}{4}$ (ii) $4\frac{2}{9}$;(b) $\frac{5}{8}$ 的 (i) $3\frac{5}{6}$ (ii) $9\frac{2}{3}$
- 化簡下列乘積:\( (\frac{1}{2} a-3 b)(3 b+\frac{1}{2} a)(\frac{1}{4} a^{2}+9 b^{2}) \)
- 化簡下列式子:$\frac{5}{2} - \frac{3}{5} \times \frac{7}{2} + \frac{3}{5} \times \frac{-2}{3}$
- 因式分解下列式子:(i) \( 8 a^{3}+b^{3}+12 a^{2} b+6 a b^{2} \);(ii) \( 8 a^{3}-b^{3}-12 a^{2} b+6 a b^{2} \);(iii) \( 27-125 a^{3}-135 a+225 a^{2} \);(iv) \( 64 a^{3}-27 b^{3}-144 a^{2} b+108 a b^{2} \);(v) \( 27 p^{3}-\frac{1}{216}-\frac{9}{2} p^{2}+\frac{1}{4} p \)