C 程式中的矩陣乘法和歸一化


矩陣乘法

現在討論矩陣乘法的過程。只有滿足特定條件才能執行矩陣乘法。假設兩個矩陣是 P 和 Q,它們的維度是 P (a x b) 和 Q (z x y),則只有當 b = x 時才能找到結果矩陣。那麼結果矩陣 R 的順序將是 (m x q)。

演算法

matrixMultiply(P, Q):
Assume dimension of P is (a x b), dimension of Q is (z x y)
Begin
   if b is not same as z, then exit
   otherwise define R matrix as (a x y)
   for i in range 0 to a - 1, do
      for j in range 0 to y – 1, do
         for k in range 0 to z, do
            R[i, j] = R[i, j] + (P[i, k] * Q[k, j])
         done
      done
   done
End

矩陣歸一化

Suppose we have a 2x3 matrix:
4 5 6
1 2 3 The normalized matrix would be:
4/sqrt(pow(5,2) + pow(6,2)) 5/sqrt(pow(5,2) + pow(6,2)) 6/sqrt(pow(5,2) + pow(6,2))
1/sqrt(pow(2,2) + pow(3,2)) 2/sqrt(pow(2,2) + pow(3,2)) 3/sqrt(pow(2,2) + pow(3,2))

示例

#include <stdio.h>
#include <math.h>
int main() {
   int row, col, row1, col1;
   int assignMatrix[50][50], rowAdd[100] = {0};
   long long int a, square[50] = {0};
   double norm[50][50], k;
   printf("Enter size of a matrix
");    scanf("%d %d", &row, &col);    printf("Enter matrix of size %dX%d
", row, col);    for ( row1 = 0; row1 < row; row1++) {       for (col1 = 0; col1 < col; col1++) {          scanf("%d", &assignMatrix[row1][col1]);       }    }    printf("
rows: %d cols: %d elements:
",row,col);    for( row1 = 0; row1 < row; row1++) {       for( col1 = 0; col1 < col; col1++) {          printf("%d ", assignMatrix[row1][col1]);       }       printf("
");    }    for (row1 = 0; row1 < row; row1++) {       for (col1 = 1; col1 < col; col1++) {          a = assignMatrix[r][c];          square[row1] += a * a;       }       printf("Sum of squares of row %d: %lld
",row1,square[row1]);    }    for ( row1 = 0; row1 < row; row1++ ) {       k = 1.0 / sqrt(square[row1]);       for( col1 = 0; col1 < col; col1++ ) {          norm[row1][col1] = k * assignMatrix[row1][col1] ;       }    }    printf("
Normalized Matrix:
");    for( row1 = 0; row1 < row; row1++) {       for( col1 = 0; col1 < col; col1++) {          printf("%.3lf ", norm[row1][col1]);       }       printf("
");    }    return 0; }

輸出

Enter size of a matrix
2
3
Enter matrix of size 2X3
4 5 6
1 2 3
rows: 2 cols: 3 elements:
4 5 6
1 2 3
Sum of squares of row 0: 61
Sum of squares of row 1: 13
Normalized Matrix:
0.512 0.640 0.768
0.277 0.555 0.832
Process returned 0 (0x0) execution time : 12.446 s
Press any key to continue.

更新時間: 2020 年 1 月 2 日

700 次檢視

推動你的 事業

獲得認證,完成課程。

開始
廣告