在Python中生成厄米多項式的偽範德蒙德矩陣


要生成厄米多項式的偽範德蒙德矩陣,請在Python NumPy中使用hermite.hermvander2d()。此方法返回偽範德蒙德矩陣。

引數x,y是點座標陣列,形狀相同。資料型別將根據元素是否為複數轉換為float64或complex128。標量將轉換為一維陣列。引數deg是最大次數列表,形式為[x_deg, y_deg]。

步驟

首先,匯入所需的庫:

import numpy as np
from numpy.polynomial import hermite as H

使用numpy.array()方法建立形狀相同的點座標陣列:

x = np.array([1, 2])
y = np.array([3, 4])

顯示陣列:

print("Array1...\n",x)
print("\nArray2...\n",y)

顯示資料型別:

print("\nArray1 datatype...\n",x.dtype)
print("\nArray2 datatype...\n",y.dtype)

檢查兩個陣列的維度:

print("\nDimensions of Array1...\n",x.ndim)
print("\nDimensions of Array2...\n",y.ndim)

檢查兩個陣列的形狀:

print("\nShape of Array1...\n",x.shape)
print("\nShape of Array2...\n",y.shape)

要生成厄米多項式的偽範德蒙德矩陣,請在Python NumPy中使用hermite.hermvander2d():

x_deg, y_deg = 2, 3
print("\nResult...\n",H.hermvander2d(x,y, [x_deg, y_deg]))

示例

import numpy as np
from numpy.polynomial import hermite as H

# Create arrays of point coordinates, all of the same shape using the numpy.array() method
x = np.array([1, 2])
y = np.array([3, 4])

# Display the arrays
print("Array1...\n",x)
print("\nArray2...\n",y)

# Display the datatype
print("\nArray1 datatype...\n",x.dtype)
print("\nArray2 datatype...\n",y.dtype)

# Check the Dimensions of both the arrays
print("\nDimensions of Array1...\n",x.ndim)
print("\nDimensions of Array2...\n",y.ndim)

# Check the Shape of both the arrays
print("\nShape of Array1...\n",x.shape)
print("\nShape of Array2...\n",y.shape)

# To generate a pseudo Vandermonde matrix of the Hermite polynomial, use the hermite.hermvander2d() in Python Numpy
# The method returns the pseudo-Vandermonde matrix.

x_deg, y_deg = 2, 3
print("\nResult...\n",H.hermvander2d(x,y, [x_deg, y_deg]))

輸出

Array1...
   [1 2]

Array2...
   [3 4]

Array1 datatype...
int64

Array2 datatype...
int64

Dimensions of Array1...
1

Dimensions of Array2...
1

Shape of Array1...
(2,)

Shape of Array2...
(2,)

Result...
   [[1.000e+00 6.000e+00 3.400e+01 1.800e+02 2.000e+00 1.200e+01 6.800e+01
    3.600e+02 2.000e+00 1.200e+01 6.800e+01 3.600e+02]
   [1.000e+00 8.000e+00 6.200e+01 4.640e+02 4.000e+00 3.200e+01 2.480e+02
    1.856e+03 1.400e+01 1.120e+02 8.680e+02 6.496e+03]]

更新於:2022年3月7日

89 次瀏覽

啟動您的職業生涯

完成課程獲得認證

開始學習
廣告
© . All rights reserved.