用C/C++程式計算n項之和,第n項為 n^2 – (n-1)^2


數學中有許多型別的數列,可以使用C程式設計輕鬆求解。此程式旨在用C程式求出其中一種數列的和。

Tn = n2 - (n-1)2

求解如 Sn mod (10^9 + 7)形式的數列的所有項的和,其中

Sn = T1 + T2 + T3 + T4 + ...... + Tn

Input: 229137999
Output: 218194447

說明

Tn 可以表示為 2n-1 求解此表示式

眾所周知,

=> Tn = n2 - (n-1)2
=>Tn = n2 - (1 + n2 - 2n)
=>Tn = n2 - 1 - n2 + 2n
=>Tn = 2n - 1.
find ∑Tn.
∑Tn = ∑(2n – 1)
Reduce the above equation to,
=>∑(2n – 1) = 2*∑n – ∑1
=>∑(2n – 1) = 2*∑n – n.
here, ∑n is the sum of first n natural numbers.
As known the sum of n natural number ∑n = n(n+1)/2.
Now the equation is,
∑Tn = (2*(n)*(n+1)/2)-n = n2
The value of n2 can be large. Instead of using n2 and take the mod of the result.
So, using the property of modular multiplication for calculating n2:
(a*b)%k = ((a%k)*(b%k))%k

示例

#include <iostream>
using namespace std;
#define mod 1000000007
int main() {
   long long n = 229137999;
   cout << ((n%mod)*(n%mod))%mod;
   return 0;
}

更新時間:2019-8-20

236次瀏覽

開啟你的職業生涯

完成該課程即可獲得認證

開始
廣告