弗洛伊演算法


弗洛伊演算法用於顯示圖中的歐拉回路或尤拉道路。此演算法從一條邊開始,透過移除前一個頂點,嘗試移動其他相鄰頂點。利用此技巧,便於針對每一步中的圖形實現歐拉回路或尤拉道路。

我們必須檢查一些規則來獲得迴路或道路 -

  • 此圖必須為尤拉圖。

  • 當存在兩條邊,一條是橋,另一條是非橋時,我們必須首先選擇非橋。

選擇開始頂點也是一種技巧,我們不能使用任何頂點作為開始頂點,如果圖中沒有奇數度頂點,我們可以選擇任何頂點作為開始點,否則當一個頂點的度為奇數時,我們必須首先選擇一個頂點。

演算法

findStartVert(graph)
Input: The given graph.
Output: Find the starting vertex to start algorithm.
Begin
   for all vertex i, in the graph, do
      deg := 0
      for all vertex j, which are adjacent with i, do
         deg := deg + 1
      done
      if deg is odd, then
         return i
   done
   when all degree is even return 0
End

dfs(prev, start, visited)
Input: The pervious and start vertex to perform DFS, and visited list.
Output: Count the number of nodes after DFS.
Begin
   count := 1
   visited[start] := true
   for all vertex b, in the graph, do
      if prev is not u, then
         if u is not visited, then
            if start and u are connected, then
               count := count + dfs(start, u, visited)
            end if
         end if
      end if
   done
   return count
End

isBridge(u, v)
Input: The start and end node.
Output: True when u and v are forming a bridge.
Begin
   deg := 0
   for all vertex i which are adjacent with v, do
      deg := deg + 1
   done
   if deg > 1, then
      return false
   return true
End

fleuryAlgorithm(start)
Input: The starting vertex.
Output: Display the Euler path or circuit.
Begin
   edge := get the number of edges in the graph
   //it will not initialize in next
   recursion call
   v_count = number of nodes
   //this will not initialize in next recursion call
   for all vertex v, which are adjacent with start, do
      make visited array and will with false value
      if isBridge(start, v), then decrease v_count by 1
      cnt = dfs(start, v, visited)
      if difference between cnt and v_count <= 2, then
         print the edge (start →‡ v)
         if isBridge(v, start), then decrease v_count by 1
         remove edge from start and v
         decrease edge by 1
         fleuryAlgorithm(v)
      end if
   done
End

示例

#include<iostream>
#include<vector>
#include<cmath>
#define NODE 8

using namespace std;
int graph[NODE][NODE] = {
   {0,1,1,0,0,0,0,0},
   {1,0,1,1,1,0,0,0},
   {1,1,0,1,0,1,0,0},
   {0,1,1,0,0,0,0,0},
   {0,1,0,0,0,1,1,1},
   {0,0,1,0,1,0,1,1},
   {0,0,0,0,1,1,0,0},
   {0,0,0,0,1,1,0,0}
};
int tempGraph[NODE][NODE];
int findStartVert() {
   for(int i = 0; i<NODE; i++) {
      int deg = 0;
      for(int j = 0; j<NODE; j++) {
         if(tempGraph[i][j])
            deg++; //increase degree, when connected edge found
      }
      if(deg % 2 != 0) //when degree of vertices are odd
      return i; //i is node with odd degree
   }
   return 0; //when all vertices have even degree, start from 0
}
int dfs(int prev, int start, bool visited[]){
   int count = 1;
   visited[start] = true;
   for(int u = 0; u<NODE; u++){
      if(prev != u){
         if(!visited[u]){
            if(tempGraph[start][u]){
               count += dfs(start, u, visited);
            }
         }
      }
   }
   return count;
}
bool isBridge(int u, int v) {
   int deg = 0;
   for(int i = 0; i<NODE; i++)
      if(tempGraph[v][i])
   deg++;
   if(deg>1) {
      return false; //the edge is not forming bridge
   }
   return true; //edge forming a bridge
}
int edgeCount() {
   int count = 0;
   for(int i = 0; i<NODE; i++)
      for(int j = i; j<NODE; j++)
         if(tempGraph[i][j])
   count++;
   return count;
}
void fleuryAlgorithm(int start) {
   static int edge = edgeCount();
   static int v_count = NODE;
   for(int v = 0; v<NODE; v++) {
      if(tempGraph[start][v]) {
         bool visited[NODE] = {false};
         if(isBridge(start, v)){
            v_count--;
         }
         int cnt = dfs(start, v, visited);
         if(abs(v_count-cnt) <= 2){
            cout << start << "--" << v << " ";
            if(isBridge(v, start)){
               v_count--;
            }
            tempGraph[start][v] = tempGraph[v][start] = 0; //remove edge from graph
            edge--;
            fleuryAlgorithm(v);
         }
      }
   }
}
int main() {
   for(int i = 0; i<NODE; i++) //copy main graph to tempGraph
   for(int j = 0; j<NODE; j++)
      tempGraph[i][j] = graph[i][j];
   cout << "Euler Path Or Circuit: ";
   fleuryAlgorithm(findStartVert());
}

輸出

Euler Path Or Circuit: 0--1 1--2 2--3 3--1 1--4 4--5 5--6 6--4 4--7 7--5 5--2 2--0

更新時間: 16-6 月-2020

6000+ 閱讀次數

開啟您的事業之旅

完成課程認證

開始
廣告