Python Pandas - 如何對具有微秒頻率的 DateTimeIndex 進行舍入


要對具有微秒頻率的 DateTimeIndex 進行舍入,請使用 DateTimeIndex.round() 方法。對於微秒頻率,請將 freq 引數與值 ‘us’ 結合使用。

首先,匯入所需的庫 −

import pandas as pd

使用週期為 5 且頻率為 s(即秒)建立時間序列索引 −

datetimeindex = pd.date_range('2021-09-29 07:20:32.261811624', periods=5,
tz='Australia/Adelaide', freq='28s')

對日期 DateTimeIndex 使用舍入運算,並使用微秒頻率。對於微秒頻率,我們使用 'us' −

print("\nPerforming round operation with microseconds frequency...\n",
datetimeindex.round(freq='us'))

示例

以下是如何編碼 −

import pandas as pd

# DatetimeIndex with period 5 and frequency as s i.e. seconds
# timezone is Australia/Adelaide
datetimeindex = pd.date_range('2021-09-29 07:20:32.261811624', periods=5,
tz='Australia/Adelaide', freq='28s')

# display DateTimeIndex
print("DateTimeIndex...\n", datetimeindex)

# display DateTimeIndex frequency
print("DateTimeIndex frequency...\n", datetimeindex.freq)

# Round operation on DateTimeIndex date with microseconds frequency
# For microseconds frequency, we have used 'us'
print("\nPerforming round operation with microseconds frequency...\n",
datetimeindex.round(freq='us'))

輸出

這會生成以下程式碼 −

DateTimeIndex...
DatetimeIndex(['2021-09-29 07:20:32.261811624+09:30',
'2021-09-29 07:21:00.261811624+09:30',
'2021-09-29 07:21:28.261811624+09:30',
'2021-09-29 07:21:56.261811624+09:30',
'2021-09-29 07:22:24.261811624+09:30'],
dtype='datetime64[ns, Australia/Adelaide]', freq='28S')
DateTimeIndex frequency...
<28 * Seconds>

Performing round operation with microseconds frequency...
DatetimeIndex(['2021-09-29 07:20:32.261812+09:30',
'2021-09-29 07:21:00.261812+09:30',
'2021-09-29 07:21:28.261812+09:30',
'2021-09-29 07:21:56.261812+09:30',
'2021-09-29 07:22:24.261812+09:30'],
dtype='datetime64[ns, Australia/Adelaide]', freq=None)

更新於: 2021-10-19

140 次瀏覽

開始您的 職業

完成課程獲得認證

開始
廣告
© . All rights reserved.