Python Pandas - 如何對具有微秒頻率的 DateTimeIndex 進行舍入
要對具有微秒頻率的 DateTimeIndex 進行舍入,請使用 DateTimeIndex.round() 方法。對於微秒頻率,請將 freq 引數與值 ‘us’ 結合使用。
首先,匯入所需的庫 −
import pandas as pd
使用週期為 5 且頻率為 s(即秒)建立時間序列索引 −
datetimeindex = pd.date_range('2021-09-29 07:20:32.261811624', periods=5,
tz='Australia/Adelaide', freq='28s')對日期 DateTimeIndex 使用舍入運算,並使用微秒頻率。對於微秒頻率,我們使用 'us' −
print("\nPerforming round operation with microseconds frequency...\n",
datetimeindex.round(freq='us'))示例
以下是如何編碼 −
import pandas as pd
# DatetimeIndex with period 5 and frequency as s i.e. seconds
# timezone is Australia/Adelaide
datetimeindex = pd.date_range('2021-09-29 07:20:32.261811624', periods=5,
tz='Australia/Adelaide', freq='28s')
# display DateTimeIndex
print("DateTimeIndex...\n", datetimeindex)
# display DateTimeIndex frequency
print("DateTimeIndex frequency...\n", datetimeindex.freq)
# Round operation on DateTimeIndex date with microseconds frequency
# For microseconds frequency, we have used 'us'
print("\nPerforming round operation with microseconds frequency...\n",
datetimeindex.round(freq='us'))輸出
這會生成以下程式碼 −
DateTimeIndex... DatetimeIndex(['2021-09-29 07:20:32.261811624+09:30', '2021-09-29 07:21:00.261811624+09:30', '2021-09-29 07:21:28.261811624+09:30', '2021-09-29 07:21:56.261811624+09:30', '2021-09-29 07:22:24.261811624+09:30'], dtype='datetime64[ns, Australia/Adelaide]', freq='28S') DateTimeIndex frequency... <28 * Seconds> Performing round operation with microseconds frequency... DatetimeIndex(['2021-09-29 07:20:32.261812+09:30', '2021-09-29 07:21:00.261812+09:30', '2021-09-29 07:21:28.261812+09:30', '2021-09-29 07:21:56.261812+09:30', '2021-09-29 07:22:24.261812+09:30'], dtype='datetime64[ns, Australia/Adelaide]', freq=None)
廣告
資料結構
網路
RDBMS
作業系統
Java
iOS
HTML
CSS
Android
Python
C 程式設計
C++
C#
MongoDB
MySQL
Javascript
PHP