Python Pandas - 根據原索引建立 DataFrame,但強制執行新索引
要根據原索引建立 DataFrame,但強制執行新索引,請使用 index.to_frame()。將引數index設定為False。
首先,匯入必需的庫 -
import pandas as pd
建立 Pandas 索引 -
index = pd.Index(['Electronics','Accessories','Decor', 'Books', 'Toys'],name ='Products')
顯示 Pandas 索引
print("Pandas Index...\n",index)
強制執行新索引並將索引轉換為 DataFrame。在此,實際索引將被另一個索引替換 -
print("\nIndex to DataFrame...\n",index.to_frame(index=False))
示例
以下是程式碼 -
import pandas as pd # Creating Pandas index index = pd.Index(['Electronics','Accessories','Decor', 'Books', 'Toys'],name ='Products') # Display the Pandas index print("Pandas Index...\n",index) # Return the number of elements in the Index print("\nNumber of elements in the index...\n",index.size) # Return the dtype of the data print("\nThe dtype object...\n",index.dtype) # Enforce new index and convert index to DataFrame # Here, the actual index gets replaced by another index print("\nIndex to DataFrame...\n",index.to_frame(index=False))
輸出
這將產生以下輸出 -
Pandas Index... Index(['Electronics', 'Accessories', 'Decor', 'Books', 'Toys'], dtype='object', name='Products') Number of elements in the index... 5 The dtype object... object Index to DataFrame... Products 0 Electronics 1 Accessories 2 Decor 3 Books 4 Toys
廣告