化簡:\( \sqrt[lm]{\frac{x^{l}}{x^{m}}} \times \sqrt[m n]{\frac{x^{m}}{x^{n}}} \times \sqrt[n l]{\frac{x^{n}}{x^{l}}} \)


已知

\( \sqrt[lm]{\frac{x^{l}}{x^{m}}} \times \sqrt[m n]{\frac{x^{m}}{x^{n}}} \times \sqrt[n l]{\frac{x^{n}}{x^{l}}} \)

要求:

我們必須化簡給定的表示式。

解答

我們知道:

$(a^{m})^{n}=a^{m n}$

$a^{m} \times a^{n}=a^{m+n}$

$a^{m} \div a^{n}=a^{m-n}$

$a^{0}=1$

因此:

$\sqrt[lm]{\frac{x^{l}}{x^{m}}} \times \sqrt[m n]{\frac{x^{m}}{x^{n}}} \times \sqrt[n l]{\frac{x^{n}}{x^{l}}}=(x^{l-m})^{\frac{1}{l m}} \times (x^{m-n})^{\frac{1}{m n}} \times (x^{n-l})^{\frac{1}{n l}}$

$=x^{\frac{l-m}{l m}} \times x^{\frac{m-n}{m n}} \times x^{\frac{n-l}{n l}}$

$=x^{\frac{l-m}{l m}+\frac{m-n}{m n}+\frac{n-l}{n l}}$

$=x^{\frac{\ln -m n+l m-l n+m n-l m}{l m n}}$

$=x^{\frac{0}{l m n}}$

$=x^{0}$

$=1$

因此,$\sqrt[lm]{\frac{x^{l}}{x^{m}}} \times \sqrt[m n]{\frac{x^{m}}{x^{n}}} \times \sqrt[n l]{\frac{x^{n}}{x^{l}}}=1$。

更新於:2022年10月10日

266 次瀏覽

開啟你的職業生涯

完成課程獲得認證

開始學習
廣告
© . All rights reserved.