證明:\( \left(x^{\frac{1}{a-b}}\right)^{\frac{1}{a-c}}\left(x^{\frac{1}{b-c}}\right)^{\frac{1}{b-a}}\left(x^{\frac{1}{c-a}}\right)^{\frac{1}{c-b}}=1 \)


待辦事項:

我們需要證明\( \left(x^{\frac{1}{a-b}}\right)^{\frac{1}{a-c}}\left(x^{\frac{1}{b-c}}\right)^{\frac{1}{b-a}}\left(x^{\frac{1}{c-a}}\right)^{\frac{1}{c-b}}=1 \)

解答

我們知道:

$(a^{m})^{n}=a^{m n}$

$a^{m} \times a^{n}=a^{m+n}$

$a^{m} \div a^{n}=a^{m-n}$

$a^{0}=1$

因此,

左邊 $=\left(x^{\frac{1}{a-b}}\right)^{\frac{1}{a-c}}\left(x^{\frac{1}{b-c}}\right)^{\frac{1}{b-a}}\left(x^{\frac{1}{c-a}}\right)^{\frac{1}{c-b}}$

$=x^{\frac{1}{(a-b)} \times \frac{1}{(a-c)}} \times x^{\frac{1}{b-c} \times \frac{1}{b-a}} \times x^{\frac{1}{c-a} \times \frac{1}{c-b}}$

$=x^{\frac{1}{(a-b)(a-c)}+\frac{1}{(b-c)(b-a)}+\frac{1}{(c-a)(c-b)}}$

$=x^{\frac{-1}{(a-b)(c-a)}+\frac{-1}{(b-c)(a-b)}+\frac{-1}{(c-a)(b-c)}}$

$=x^{\frac{-b+c-c+a-a+b}{(a-b)(b-c)(c-a)}}$

$=x^{\frac{0}{(a-b)(b-c)(c-a)}}$

$=x^{0}$

$=1$

$=$ 右邊

證畢。      

更新於: 2022年10月10日

62 次瀏覽

開啟你的職業生涯

完成課程獲得認證

立即開始
廣告

© . All rights reserved.