4000盧比在年利率5%的條件下,每年複利,需要多少年才能增長到4630.50盧比?


已知:本金 $P=₹\ 4000$,本利和 $A=₹\ 4630.50$,利率 $r=5$   %。

求解:求解年數 $t=?$

解:

已知,$A=P( 1+\frac{r}{100})^t$

$\Rightarrow 4630.50=4000( 1+\frac{5}{100})^t$

$\Rightarrow 4630.50=4000( 1+\frac{1}{20})^t$

$\Rightarrow \frac{463050}{2}=4000( \frac{20+1}{20})^t$

$\Rightarrow \frac{9261}{8000}=( \frac{21}{20})^t$

$\Rightarrow \frac{21\times21\times21}{20\times20\times20}=( \frac{21}{20})^t$

$\Rightarrow ( \frac{21}{20}|)^3=( \frac{21}{20})^t$

$\Rightarrow n=3$

因此,在3年內,本利和將為₹\ 4630.50。

更新於: 2022年10月10日

2K+ 次瀏覽

開啟你的職業生涯

完成課程並獲得認證

開始學習
廣告

© . All rights reserved.