求解 $( \frac{125}{64})^2+( \frac{1}{( \frac{625}{256})^{-\frac{1}{4}}})+[( \frac{\sqrt{36}}{\sqrt[3]{64}})^0]^{\frac{1}{2}}$ 的值。


已知:$( \frac{125}{64})^2+( \frac{1}{( \frac{625}{256})^{-\frac{1}{4}}})+[( \frac{\sqrt{36}}{\sqrt[3]{64}})^0]^{\frac{1}{2}}$

要求:求解 $( \frac{125}{64})^2+( \frac{1}{( \frac{625}{256})^{-\frac{1}{4}}})+[( \frac{\sqrt{36}}{\sqrt[3]{64}})^0]^{\frac{1}{2}}$ 的值。

解:

$( \frac{125}{64})^2+( \frac{1}{( \frac{625}{256})^{-\frac{1}{4}}})+[( \frac{\sqrt{36}}{\sqrt[3]{64}})^0]^{\frac{1}{2}}$

$=( \frac{5^3}{4^3})^2+( \frac{5^4}{4^4})^{\frac{1}{4}}+[1]^{\frac{1}{2}}$

$=( \frac{5^3}{4^3})^2+( \frac{(5^4)^{\frac{1}{4}}}{( 4^4)^{\frac{1}{4}}}+1$ [$\because 1^x=1$]

$=\frac{( 5)^{3\times2}}{( 4)^{3\times2}}+\frac{( 5)^{( 4\times\frac{1}{4})}}{( 4)^{( 4\times\frac{1}{4})}}+1$

$=\frac{5^6}{4^6}+\frac{5}{4}+1$

$=\frac{15625}{4096}+\frac{5}{4}+1$

$=3.80+1.25+1$

$=6.05$

更新於:2022年10月10日

45 次瀏覽

開啟你的職業生涯

完成課程獲得認證

開始學習
廣告
© . All rights reserved.