計算
(i) \( \sqrt[3]{36} \times \sqrt[3]{384} \)
(ii) \( \sqrt[3]{96} \times \sqrt[3]{144} \)
(iii) \( \sqrt[3]{100} \times \sqrt[3]{270} \)
(iv) \( \sqrt[3]{121} \times \sqrt[3]{297} \)


求解: 

我們需要計算給定的表示式。

解答

(i) $\sqrt[3]{36} \times \sqrt[3]{384}=\sqrt[3]{36 \times 384}$

$=\sqrt[3]{2 \times 2 \times 3 \times 3 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3}$

$=\sqrt[3]{3 \times 3 \times 3 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2}$

$=\sqrt[3]{3^{3} \times 2^{3} \times 2^{3} \times 2^{3}}$

$=3 \times 2 \times 2 \times 2 = 24$

$=24$

(ii) $\sqrt[3]{96} \times \sqrt[3]{144}=\sqrt[3]{96 \times 144}$

$=\sqrt[3]{2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3}$

$=\sqrt[3]{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3}$

$=\sqrt[3]{2^{3} \times 2^{3} \times 2^{3} \times 3^{3}}$

$=2 \times 2 \times 2 \times 3 = 24$

$=24$

(iii) $\sqrt[3]{100} \times \sqrt[3]{270}=\sqrt[3]{100 \times 270}$

$=\sqrt[3]{27000}$

$=\sqrt[3]{1000 \times 27}$

$=\sqrt[3]{10 \times 10 \times 10 \times 3 \times 3 \times 3}$

$=\sqrt[3]{10^{3} \times 3^{3}}$

$=10 \times 3 = 30$

$=30$

(iv) $\sqrt[3]{121} \times \sqrt[3]{297}=\sqrt[3]{121 \times 297}$

$=\sqrt[3]{11 \times 11 \times 11 \times 3 \times 3 \times 3}$

$=\sqrt[3]{(11)^{3} \times(3)^{3}}$

$=11 \times 3 = 33$

$=33$

更新於:2022年10月10日

54 次瀏覽

開啟你的職業生涯

完成課程獲得認證

開始學習
廣告
© . All rights reserved.