資料結構中的最優二叉搜尋樹
給定一組已排序的整數和一個表示頻率的陣列 freq。我們的任務是用這些資料建立一個二叉搜尋樹,以查詢所有搜尋的最小開銷。
建立了一個輔助陣列 cost[n, n] 來求解和儲存子問題的解答。開銷矩陣將包含資料,以自下而上的方式解決問題。
輸入 − 關鍵字作為節點及頻率。
Keys = {10, 12, 20} Frequency = {34, 8, 50}
輸出 − 最小開銷是 142。
以下是給定值可能出現的二叉搜尋樹。
對於情況 1,開銷為:(34*1) + (8*2) + (50*3) = 200
對於情況 2,開銷為:(8*1) + (34*2) + (50*2) = 176。
類似地,對於情況 5,開銷為:(50*1) + (34 * 2) + (8 * 3) = 142(最小)
演算法
optCostBst(keys, freq, n) Input: Keys to insert in BST, frequency for each keys, number of keys. Output: Minimum cost to make optimal BST. Begin define cost matrix of size n x n for i in range 0 to n-1, do cost[i, i] := freq[i] done for length in range 2 to n, do for i in range 0 to (n-length+1), do j := i + length – 1 cost[i, j] := ∞ for r in range i to j, done if r > i, then c := cost[i, r-1] else c := 0 if r < j, then c := c + cost[r+1, j] c := c + sum of frequency from i to j if c < cost[i, j], then cost[i, j] := c done done done return cost[0, n-1] End
示例
#include <iostream> using namespace std; int sum(int freq[], int low, int high){ //sum of frequency from low to high range int sum = 0; for (int k = low; k <=high; k++) sum += freq[k]; return sum; } int minCostBST(int keys[], int freq[], int n){ int cost[n][n]; for (int i = 0; i < n; i++) //when only one key, move along diagonal elements cost[i][i] = freq[i]; for (int length=2; length<=n; length++){ for (int i=0; i<=n-length+1; i++){ //from 0th row to n-length+1 row as i int j = i+length-1; cost[i][j] = INT_MAX; //initially store to infinity for (int r=i; r<=j; r++){ //find cost when r is root of subtree int c = ((r > i)?cost[i][r-1]:0)+((r < j)?cost[r+1][j]:0)+sum(freq, i, j); if (c < cost[i][j]) cost[i][j] = c; } } } return cost[0][n-1]; } int main(){ int keys[] = {10, 12, 20}; int freq[] = {34, 8, 50}; int n = 3; cout << "Cost of Optimal BST is: "<< minCostBST(keys, freq, n); }
輸出
Cost of Optimal BST is: 142
廣告