如何使用 Python 和 TensorFlow 評估測試資料上的兩個模型?


TensorFlow 是 Google 提供的一個機器學習框架。它是一個開源框架,與 Python 結合使用,可以實現演算法、深度學習應用程式等等。它用於研究和生產目的。

可以使用以下程式碼行在 Windows 上安裝 'tensorflow' 包:

pip install tensorflow

張量是 TensorFlow 中使用的一種資料結構。它有助於連線資料流圖中的邊。此資料流圖稱為“資料流圖”。張量只不過是多維陣列或列表。

我們正在使用 Google Colaboratory 來執行以下程式碼。Google Colab 或 Colaboratory 幫助在瀏覽器上執行 Python 程式碼,無需任何配置,並且可以免費訪問 GPU(圖形處理單元)。Colaboratory 建立在 Jupyter Notebook 之上。

示例

以下是程式碼片段:

print("The model is being evaluated")
binary_loss, binary_accuracy = binary_model.evaluate(binary_test_ds)
int_loss, int_accuracy = int_model.evaluate(int_test_ds)

print("The accuracy of Binary model is: {:2.2%}".format(binary_accuracy))
print("The accuracy of Int model is: {:2.2%}".format(int_accuracy))

程式碼來源:https://www.tensorflow.org/tutorials/load_data/text

輸出

The model is being evaluated
250/250 [==============================] - 3s 12ms/step - loss: 0.5265 - accuracy: 0.8110
250/250 [==============================] - 4s 14ms/step - loss: 0.5394 - accuracy: 0.8014
The accuracy of Binary model is: 81.10%
The accuracy of Int model is: 80.14%

解釋

  • 評估了與 “二進位制” 和 “整數” 向量化模型訓練相關的損失和準確性。

  • 此資料顯示在控制檯上。

更新於:2021年1月19日

75 次檢視

啟動你的職業生涯

完成課程獲得認證

開始學習
廣告
© . All rights reserved.