如何使用 Tensorflow 在 Python 中訓練模型?
Tensorflow 中可以使用“train”方法訓練模型,其中指定了訓練資料和 epochs(模型擬合所需的資料訓練次數)。
瞭解更多: 什麼是 TensorFlow?Keras 如何與 TensorFlow 協同工作以建立神經網路?
我們使用 Google Colaboratory 來執行以下程式碼。Google Colab 或 Colaboratory 幫助透過瀏覽器執行 Python 程式碼,並且需要零配置和免費訪問 GPU(圖形處理單元)。Colaboratory 構建在 Jupyter Notebook 之上。
print("The model is being trained")
epochs=12
history = model.fit(
train_ds,
validation_data=val_ds,
epochs=epochs
)程式碼來源:https://www.tensorflow.org/tutorials/images/classification
輸出
The model is being trained Epoch 1/12 92/92 [==============================] - 94s 1s/step - loss: 1.6007 - accuracy: 0.3411 - val_loss: 1.0708 - val_accuracy: 0.5627 Epoch 2/12 92/92 [==============================] - 92s 995ms/step - loss: 1.0138 - accuracy: 0.5843 - val_loss: 0.9451 - val_accuracy: 0.6458 Epoch 3/12 92/92 [==============================] - 91s 990ms/step - loss: 0.8382 - accuracy: 0.6767 - val_loss: 0.9054 - val_accuracy: 0.6471 Epoch 4/12 92/92 [==============================] - 90s 984ms/step - loss: 0.6362 - accuracy: 0.7580 - val_loss: 0.8872 - val_accuracy: 0.6540 Epoch 5/12 92/92 [==============================] - 94s 1s/step - loss: 0.4125 - accuracy: 0.8572 - val_loss: 0.9114 - val_accuracy: 0.6676 Epoch 6/12 92/92 [==============================] - 91s 988ms/step - loss: 0.2460 - accuracy: 0.9207 - val_loss: 1.0891 - val_accuracy: 0.6757 Epoch 7/12 92/92 [==============================] - 91s 988ms/step - loss: 0.1721 - accuracy: 0.9532 - val_loss: 1.2619 - val_accuracy: 0.6635 Epoch 8/12 92/92 [==============================] - 90s 983ms/step - loss: 0.0658 - accuracy: 0.9823 - val_loss: 1.4119 - val_accuracy: 0.6703 Epoch 9/12 92/92 [==============================] - 90s 983ms/step - loss: 0.0556 - accuracy: 0.9865 - val_loss: 1.6113 - val_accuracy: 0.6090 Epoch 10/12 92/92 [==============================] - 91s 992ms/step - loss: 0.0805 - accuracy: 0.9729 - val_loss: 1.9744 - val_accuracy: 0.6390 Epoch 11/12 92/92 [==============================] - 90s 979ms/step - loss: 0.0545 - accuracy: 0.9838 - val_loss: 1.9303 - val_accuracy: 0.6662 Epoch 12/12 92/92 [==============================] - 96s 1s/step - loss: 0.0176 - accuracy: 0.9961 - val_loss: 1.8234 - val_accuracy: 0.6540

說明
- 該模型經過訓練,可以擬合數據。
- 這是透過“fit”方法完成的。
廣告
資料結構
網路
關係型資料庫管理系統
作業系統
Java
iOS
HTML
CSS
Android
Python
C 程式設計
C++
C#
MongoDB
MySQL
Javascript
PHP