如何使用 Tensorflow 在 Python 中訓練模型?


Tensorflow 中可以使用“train”方法訓練模型,其中指定了訓練資料和 epochs(模型擬合所需的資料訓練次數)。

瞭解更多: 什麼是 TensorFlow?Keras 如何與 TensorFlow 協同工作以建立神經網路?

我們使用 Google Colaboratory 來執行以下程式碼。Google Colab 或 Colaboratory 幫助透過瀏覽器執行 Python 程式碼,並且需要零配置和免費訪問 GPU(圖形處理單元)。Colaboratory 構建在 Jupyter Notebook 之上。

print("The model is being trained")
epochs=12
history = model.fit(
   train_ds,
   validation_data=val_ds,
   epochs=epochs
)

程式碼來源:https://www.tensorflow.org/tutorials/images/classification

輸出

The model is being trained
Epoch 1/12
92/92 [==============================] - 94s 1s/step - loss: 1.6007 - accuracy: 0.3411 - val_loss: 1.0708 - val_accuracy: 0.5627
Epoch 2/12
92/92 [==============================] - 92s 995ms/step - loss: 1.0138 - accuracy: 0.5843 - val_loss: 0.9451 - val_accuracy: 0.6458
Epoch 3/12
92/92 [==============================] - 91s 990ms/step - loss: 0.8382 - accuracy: 0.6767 - val_loss: 0.9054 - val_accuracy: 0.6471
Epoch 4/12
92/92 [==============================] - 90s 984ms/step - loss: 0.6362 - accuracy: 0.7580 - val_loss: 0.8872 - val_accuracy: 0.6540
Epoch 5/12
92/92 [==============================] - 94s 1s/step - loss: 0.4125 - accuracy: 0.8572 - val_loss: 0.9114 - val_accuracy: 0.6676
Epoch 6/12
92/92 [==============================] - 91s 988ms/step - loss: 0.2460 - accuracy: 0.9207 - val_loss: 1.0891 - val_accuracy: 0.6757
Epoch 7/12
92/92 [==============================] - 91s 988ms/step - loss: 0.1721 - accuracy: 0.9532 - val_loss: 1.2619 - val_accuracy: 0.6635
Epoch 8/12
92/92 [==============================] - 90s 983ms/step - loss: 0.0658 - accuracy: 0.9823 - val_loss: 1.4119 - val_accuracy: 0.6703
Epoch 9/12
92/92 [==============================] - 90s 983ms/step - loss: 0.0556 - accuracy: 0.9865 - val_loss: 1.6113 - val_accuracy: 0.6090
Epoch 10/12
92/92 [==============================] - 91s 992ms/step - loss: 0.0805 - accuracy: 0.9729 - val_loss: 1.9744 - val_accuracy: 0.6390
Epoch 11/12
92/92 [==============================] - 90s 979ms/step - loss: 0.0545 - accuracy: 0.9838 - val_loss: 1.9303 - val_accuracy: 0.6662
Epoch 12/12
92/92 [==============================] - 96s 1s/step - loss: 0.0176 - accuracy: 0.9961 - val_loss: 1.8234 - val_accuracy: 0.6540

說明

  • 該模型經過訓練,可以擬合數據。
  • 這是透過“fit”方法完成的。

更新於:2021-02-20

132 人次瀏覽

開啟你的 職業生涯

完成課程獲得認證

開始
廣告
© . All rights reserved.