在 Python 中獲取四維陣列的逆矩陣
要計算四維陣列的逆矩陣,可以使用 Python 中的 numpy.linalg.tensorinv() 方法。結果是相對於 tensordot 操作 tensordot(a, b, ind) 的 a 的逆矩陣,即在浮點精度範圍內,tensordot(tensorinv(a), a, ind) 是 tensordot 操作的“單位”張量。
該方法返回 a 的 tensordot 逆矩陣,形狀為 a.shape[ind:] + a.shape[:ind]。第一個引數是 a,要“反轉”的張量。其形狀必須是“正方形”,即 prod(a.shape[:ind]) == prod(a.shape[ind:])。第二個引數是 ind,參與逆和運算的前幾個索引的個數。必須是正整數,預設為 2。
步驟
首先,匯入所需的庫 -
import numpy as np from numpy.linalg import inv
建立一個數組。numpy.eye() 返回一個二維陣列,對角線上的元素為 1,其他位置的元素為 0 -
arr = np.eye(4*6)
更改上面建立的陣列的形狀 -
arr.shape = (4, 6, 8, 3)
顯示陣列 -
print("Our Array...\n",arr)
檢查維度 -
print("\nDimensions of our Array...\n",arr.ndim)
獲取資料型別 -
print("\nDatatype of our Array object...\n",arr.dtype)
獲取形狀 -
print("\nShape of our Array object...\n",arr.shape)
要計算四維陣列的逆矩陣,可以使用 Python 中的 numpy.linalg.tensorinv() 方法 -
print("\nResult...\n",np.linalg.tensorinv(arr))
示例
import numpy as np from numpy.linalg import inv # Create an array # The numpy.eye() returns a 2-D array with ones on the diagonal and zeros elsewhere arr = np.eye(4*6) # Changing the shape of the array created above arr.shape = (4, 6, 8, 3) # Display the array print("Our Array...\n",arr) # Check the Dimensions print("\nDimensions of our Array...\n",arr.ndim) # Get the Datatype print("\nDatatype of our Array object...\n",arr.dtype) # Get the Shape print("\nShape of our Array object...\n",arr.shape) # To compute the inverse of a Four-Dimensional array, use the numpy.linalg.tensorinv() method in Python. print("\nResult...\n",np.linalg.tensorinv(arr))
輸出
Our Array... [[[[1. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.]] [[0. 1. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.]] [[0. 0. 1.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.]] [[0. 0. 0.] [1. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.]] [[0. 0. 0.] [0. 1. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.]] [[0. 0. 0.] [0. 0. 1.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.]]] [[[0. 0. 0.] [0. 0. 0.] [1. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.]] [[0. 0. 0.] [0. 0. 0.] [0. 1. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.]] [[0. 0. 0.] [0. 0. 0.] [0. 0. 1.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.]] [[0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [1. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.]] [[0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 1. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.]] [[0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.]]] [[[0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [1. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.]] [[0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 1. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.]] [[0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 1.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.]] [[0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [1. 0. 0.] [0. 0. 0.] [0. 0. 0.]] [[0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 1. 0.] [0. 0. 0.] [0. 0. 0.]] [[0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 1.] [0. 0. 0.] [0. 0. 0.]]] [[[0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [1. 0. 0.] [0. 0. 0.]] [[0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 1. 0.] [0. 0. 0.]] [[0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 1.] [0. 0. 0.]] [[0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [1. 0. 0.]] [[0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 1. 0.]] [[0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 0.] [0. 0. 1.]]]] Dimensions of our Array... 4 Datatype of our Array object... float64 Shape of our Array object... (4, 6, 8, 3) Result... [[[[1. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.]] [[0. 1. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.]] [[0. 0. 1. 0. 0. 0.] [0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.]]] [[[0. 0. 0. 1. 0. 0.] [0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.]] [[0. 0. 0. 0. 1. 0.] [0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.]] [[0. 0. 0. 0. 0. 1.] [0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.]]] [[[0. 0. 0. 0. 0. 0.] [1. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.]] [[0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.]] [[0. 0. 0. 0. 0. 0.] [0. 0. 1. 0. 0. 0.] [0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.]]] [[[0. 0. 0. 0. 0. 0.] [0. 0. 0. 1. 0. 0.] [0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.]] [[0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 1. 0.] [0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.]] [[0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 1.] [0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.]]] [[[0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.] [1. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.]] [[0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.]] [[0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.] [0. 0. 1. 0. 0. 0.] [0. 0. 0. 0. 0. 0.]]] [[[0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.] [0. 0. 0. 1. 0. 0.] [0. 0. 0. 0. 0. 0.]] [[0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 1. 0.] [0. 0. 0. 0. 0. 0.]] [[0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 1.] [0. 0. 0. 0. 0. 0.]]] [[[0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.] [1. 0. 0. 0. 0. 0.]] [[0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0.]] [[0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.] [0. 0. 1. 0. 0. 0.]]] [[[0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.] [0. 0. 0. 1. 0. 0.]] [[0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 1. 0.]] [[0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 1.]]]]
廣告