C++程式實現執行緒二叉樹
執行緒二叉樹是一種二叉樹,它提供了一種以特定順序遍歷樹的機制。
它使中序遍歷更快,並且無需使用堆疊和遞迴。執行緒二叉樹有兩種型別。
**單執行緒** 每個節點都連線到左側或右側,這意味著中序前驅或後繼。這裡,所有右空指標將指向中序後繼,或所有左空指標將指向中序前驅。
**雙執行緒** 每個節點都連線到左側和右側,這意味著中序前驅和後繼。這裡,所有右空指標將指向中序後繼,所有左空指標將指向中序前驅。
這是一個使用C++實現執行緒二叉樹的程式。
函式和虛擬碼
插入函式 insert()
Insert node as root if tree is completely empty. Otherwise, if newnode < current node then Go to left thread and set the newnode as left child. else Go to right thread and set the newnode as right child.
搜尋函式 search()
If search key < root then Go to left thread else Go to right thread
刪除函式 delete()
查詢節點及其父節點。刪除節點有三種情況:
- 有兩個子節點的節點。
- 只有一個左子節點的節點。
- 只有一個右子節點的節點。
示例
#include <iostream>
#include <cstdlib>
#define MAX_VALUE 65536
using namespace std;
class N { //node declaration
public:
int k;
N *l, *r;
bool leftTh, rightTh;
};
class ThreadedBinaryTree {
private:
N *root;
public:
ThreadedBinaryTree() { //constructor to initialize the variables
root= new N();
root->r= root->l= root;
root->leftTh = true;
root->k = MAX_VALUE;
}
void makeEmpty() { //clear tree
root= new N();
root->r = root->l = root;
root->leftTh = true;
root->k = MAX_VALUE;
}
void insert(int key) {
N *p = root;
for (;;) {
if (p->k< key) { / /move to right thread
if (p->rightTh)
break;
p = p->r;
} else if (p->k > key) { // move to left thread
if (p->leftTh)
break;
p = p->l;
} else {
return;
}
}
N *temp = new N();
temp->k = key;
temp->rightTh= temp->leftTh= true;
if (p->k < key) {
temp->r = p->r;
temp->l= p;
p->r = temp;
p->rightTh= false;
} else {
temp->r = p;
temp->l = p->l;
p->l = temp;
p->leftTh = false;
}
}
bool search(int key) {
N *temp = root->l;
for (;;) {
if (temp->k < key) { //search in left thread
if (temp->rightTh)
return false;
temp = temp->r;
} else if (temp->k > key) { //search in right thread
if (temp->leftTh)
return false;
temp = temp->l;
} else {
return true;
}
}
}
void Delete(int key) {
N *dest = root->l, *p = root;
for (;;) { //find Node and its parent.
if (dest->k < key) {
if (dest->rightTh)
return;
p = dest;
dest = dest->r;
} else if (dest->k > key) {
if (dest->leftTh)
return;
p = dest;
dest = dest->l;
} else {
break;
}
}
N *target = dest;
if (!dest->rightTh && !dest->leftTh) {
p = dest; //has two children
target = dest->l; //largest node at left child
while (!target->rightTh) {
p = target;
target = target->r;
}
dest->k= target->k; //replace mode
}
if (p->k >= target->k) { //only left child
if (target->rightTh && target->leftTh) {
p->l = target->l;
p->leftTh = true;
} else if (target->rightTh) {
N*largest = target->l;
while (!largest->rightTh) {
largest = largest->r;
}
largest->r = p;
p->l= target->l;
} else {
N *smallest = target->r;
while (!smallest->leftTh) {
smallest = smallest->l;
}
smallest->l = target->l;
p->l = target->r;
}
} else {//only right child
if (target->rightTh && target->leftTh) {
p->r= target->r;
p->rightTh = true;
} else if (target->rightTh) {
N *largest = target->l;
while (!largest->rightTh) {
largest = largest->r;
}
largest->r= target->r;
p->r = target->l;
} else {
N *smallest = target->r;
while (!smallest->leftTh) {
smallest = smallest->l;
}
smallest->l= p;
p->r= target->r;
}
}
}
void displayTree() { //print the tree
N *temp = root, *p;
for (;;) {
p = temp;
temp = temp->r;
if (!p->rightTh) {
while (!temp->leftTh) {
temp = temp->l;
}
}
if (temp == root)
break;
cout<<temp->k<<" ";
}
cout<<endl;
}
};
int main() {
ThreadedBinaryTree tbt;
cout<<"ThreadedBinaryTree\n";
char ch;
int c, v;
while(1) {
cout<<"1. Insert "<<endl;
cout<<"2. Delete"<<endl;
cout<<"3. Search"<<endl;
cout<<"4. Clear"<<endl;
cout<<"5. Display"<<endl;
cout<<"6. Exit"<<endl;
cout<<"Enter Your Choice: ";
cin>>c;
//perform switch operation
switch (c) {
case 1 :
cout<<"Enter integer element to insert: ";
cin>>v;
tbt.insert(v);
break;
case 2 :
cout<<"Enter integer element to delete: ";
cin>>v;
tbt.Delete(v);
break;
case 3 :
cout<<"Enter integer element to search: ";
cin>>v;
if (tbt.search(v) == true)
cout<<"Element "<<v<<" found in the tree"<<endl;
else
cout<<"Element "<<v<<" not found in the tree"<<endl;
break;
case 4 :
cout<<"\nTree Cleared\n";
tbt.makeEmpty();
break;
case 5:
cout<<"Display tree: \n ";
tbt.displayTree();
break;
case 6:
exit(1);
default:
cout<<"\nInvalid type! \n";
}
}
cout<<"\n";
return 0;
}輸出
ThreadedBinaryTree 1. Insert 2. Delete 3. Search 4. Clear 5. Display 6. Exit Enter Your Choice: 1 Enter integer element to insert: 10 1. Insert 2. Delete 3. Search 4. Clear 5. Display 6. Exit Enter Your Choice: 1 Enter integer element to insert: 7 1. Insert 2. Delete 3. Search 4. Clear 5. Display 6. Exit Enter Your Choice: 1 Enter integer element to insert: 6 1. Insert 2. Delete 3. Search 4. Clear 5. Display 6. Exit Enter Your Choice: 1 Enter integer element to insert: 4 1. Insert 2. Delete 3. Search 4. Clear 5. Display 6. Exit Enter Your Choice: 1 Enter integer element to insert: 5 1. Insert 2. Delete 3. Search 4. Clear 5. Display 6. Exit Enter Your Choice: 1 Enter integer element to insert: 3 1. Insert 2. Delete 3. Search 4. Clear 5. Display 6. Exit Enter Your Choice: 5 Display tree 3 4 5 6 7 10 1. Insert 2. Delete 3. Search 4. Clear 5. Display 6. Exit Enter Your Choice: 3 Enter integer element to search: 7 Element 7 found in the tree 1. Insert 2. Delete 3. Search 4. Clear 5. Display 6. Exit Enter Your Choice: 3 Enter integer element to search: 1 Element 1 not found in the tree 1. Insert 2. Delete 3. Search 4. Clear 5. Display 6. Exit Enter Your Choice: 2 Enter integer element to delete: 3 1. Insert 2. Delete 3. Search 4. Clear 5. Display 6. Exit Enter Your Choice: 5 Display tree 4 5 6 7 10 1. Insert 2. Delete 3. Search 4. Clear 5. Display 6. Exit Enter Your Choice: 4 Tree Cleared 1. Insert 2. Delete 3. Search 4. Clear 5. Display 6. Exit Enter Your Choice: 5 Display tree 1. Insert 2. Delete 3. Search 4. Clear 5. Display 6. Exit Enter Your Choice: 6
廣告
資料結構
網路
關係資料庫管理系統(RDBMS)
作業系統
Java
iOS
HTML
CSS
Android
Python
C語言程式設計
C++
C#
MongoDB
MySQL
Javascript
PHP