C++ 程式來實現 B+ 樹


B+ 樹是二叉查詢樹的一個推廣,因為它的一個結點可以有大於兩個的孩子。它基本上是一種自平衡樹資料結構,它維護已排序的資料,並允許以對數時間進行順序訪問、搜尋、插入和刪除。

它可以看作是一棵 B 樹,它的每個結點只包含鍵,並且在底部添加了一層具有連結的葉結點。

演算法

Begin
   function insert() to insert the nodes into the tree:
      Initialize x as root.
   if x is leaf and having space for one more info then insert a to x.
   else if x is not leaf, do
      Find the child of x that is going to to be traversed next.
   If the child is not full, change x to point to the child.
   If the child is full, split it and change x to point to one of the two parts of the child. If a is smaller
      than mid key in the child, then set x as first part of the child. Else second part of the child.
End

示例程式碼

#include<iostream>
using namespace std;
struct BplusTree {
   int *d;
   BplusTree **child_ptr;
   bool l;
   int n;
}*r = NULL, *np = NULL, *x = NULL;
BplusTree* init()//to create nodes {
   int i;
   np = new BplusTree;
   np->d = new int[6];//order 6
   np->child_ptr = new BplusTree *[7];
   np->l = true;
   np->n = 0;
   for (i = 0; i < 7; i++) {
      np->child_ptr[i] = NULL;
   }
   return np;
}

void traverse(BplusTree *p)//traverse tree {
   cout<<endl;
   int i;
   for (i = 0; i < p->n; i++) {
      if (p->l == false) {
         traverse(p->child_ptr[i]);
      }
      cout << " " << p->d[i];
   }
   if (p->l == false) {
      traverse(p->child_ptr[i]);
   }
   cout<<endl;
}

void sort(int *p, int n)//sort the tree {
   int i, j, t;
   for (i = 0; i < n; i++) {
      for (j = i; j <= n; j++) {
         if (p[i] >p[j]) {
            t = p[i];
            p[i] = p[j];
            p[j] = t;
         }
      }
   }
}

int split_child(BplusTree *x, int i) {
   int j, mid;
   BplusTree *np1, *np3, *y;
   np3 = init();
   np3->l = true;
   if (i == -1) {
      mid = x->d[2];
      x->d[2] = 0;
      x->n--;
      np1 = init();
      np1->l = false;
      x->l = true;
      for (j = 3; j < 6; j++) {
         np3->d[j - 3] = x->d[j];
         np3->child_ptr[j - 3] = x->child_ptr[j];
         np3->n++;
         x->d[j] = 0;
         x->n--;
      }
      for (j = 0; j < 6; j++) {
         x->child_ptr[j] = NULL;
      }
      np1->d[0] = mid;
      np1->child_ptr[np1->n] = x;
      np1->child_ptr[np1->n + 1] = np3;
      np1->n++;
      r = np1;
   } else {
      y = x->child_ptr[i];
      mid = y->d[2];
      y->d[2] = 0;
      y->n--;
      for (j = 3; j <6 ; j++) {
         np3->d[j - 3] = y->d[j];
         np3->n++;
         y->d[j] = 0;
         y->n--;
      }
      x->child_ptr[i + 1] = y;
      x->child_ptr[i + 1] = np3;
   }
   return mid;
}

void insert(int a) {
   int i, t;
   x = r;
   if (x == NULL) {
      r = init();
      x = r;
   } else {
      if (x->l== true && x->n == 6) {
         t = split_child(x, -1);
         x = r;
         for (i = 0; i < (x->n); i++) {
            if ((a >x->d[i]) && (a < x->d[i + 1])) {
            i++;
            break;
         } else if (a < x->d[0]) {
            break;
         } else {
            continue;
         }
      }
      x = x->child_ptr[i];
   } else {
      while (x->l == false) {
         for (i = 0; i < (x->n); i++) {
            if ((a >x->d[i]) && (a < x->d[i + 1])) {
               i++;
               break;
            } else if (a < x->d[0]) {
               break;
            } else {
               continue;
            }
         }
         if ((x->child_ptr[i])->n == 6) {
            t = split_child(x, i);
            x->d[x->n] = t;
            x->n++;
            continue;
         } else {
            x = x->child_ptr[i];
         }
      }
   }
}
   x->d[x->n] = a;
   sort(x->d, x->n);
   x->n++;
}

int main() {
   int i, n, t;
   cout<<"enter the no of elements to be inserted\n";
   cin>>n;
   for(i = 0; i < n; i++) {
      cout<<"enter the element\n";
      cin>>t;
      insert(t);
   }
   cout<<"traversal of constructed B tree\n";
   traverse(r);
}

輸出

enter the no of elements to be inserted
10
enter the element
10
enter the element
20
enter the element
30
enter the element
40
enter the element
50
enter the element
60
enter the element
70
enter the element
80
enter the element
90
enter the element
100
traversal of constructed B tree
10 20
30
40 50
60
70 80 90 100

更新於:30-7 月 -2019

3K+次瀏覽

啟動你的 職業

透過完成整個課程獲得認證

開始
廣告
© . All rights reserved.