用於實現笛卡爾樹的 C++ 程式
這是一個用於實現笛卡爾樹的 C++ 程式。
演算法
Begin class CarTree to declare the functions: min() = To find index of the minimum element in array: if (arr[i] < min) min = arr[i] minind = i inorder() = For inorder traversal of the tree: If tree is empty Then return inorder (node->l) Print the root as node->d inorder (node->r) End
示例程式碼
#include <iostream>
#include <cstdio>
#include <cstdlib>
using namespace std;
struct nod//node declaration {
int d;
struct nod* l;
struct nod* r;
};
class CarTree {
public://declare the functions
nod *newNode (int);
int min(int [], int, int);
nod *buildTree (int [], int, int);
void inorder (nod* node);
void show(nod *, int);
CTree()
{}
};
int CarTree::min(int arr[], int s, int e) {
int i, min = arr[s], minind = s;
for (i = s + 1; i <= e; i++) {
if (arr[i] < min) {
min = arr[i];
minind = i;
}
}
return minind;
}
nod *CarTree::buildTree (int inorder[], int s, int e)//build the cratesian tree {
if (s >e)
return NULL;
int i = min(inorder, s, e);
nod *r = newNode(inorder[i]);
if (s == e)
return r;
r->l = buildTree(inorder, s, i - 1);//call the function recursively for left child
r->r = buildTree(inorder, i + 1, e);//call the function recursively for right child
return r;
}
void CarTree::inorder (struct nod* node) {
if (node == NULL)
return;
inorder (node->l);
cout<<node->d<<" ";
inorder (node->r);
}
void CarTree::show(nod *ptr, int level)//show the tree {
int i;
if(ptr == NULL)
return;
if (ptr != NULL) {
show(ptr->r, level + 1);
cout<<endl;
for (i = 0;i < level;i++)
cout<<" ";
cout<<ptr->d;
show(ptr->l, level + 1);
}
}
nod *CarTree::newNode (int d)//creation of new node {
nod* t = new nod;
t->d = d;
t->l = NULL;
t->r = NULL;
return t;
}
int main() {
CarTree ct;
int i, n;
cout<<"Enter number of elements to be inserted: ";
cin>>n;
int a[n];
for (i = 0; i < n; i++) {
cout<<"Enter Element "<<i + 1<<" : ";
cin>>a[i];
}
nod *r = ct.buildTree(a, 0, n - 1);
cout<<"Cartesian tree Structure: "<<endl;
ct.show(r,1);
cout<<endl;
cout<<"\n Inorder traversal of the tree \n"<<endl;
ct.inorder(r);
cout<<endl;
return 0;
}輸出
Enter number of elements to be inserted: 10 Enter Element 1 : 10 Enter Element 2 : 30 Enter Element 3 : 20 Enter Element 4 : 40 Enter Element 5 : 50 Enter Element 6 : 70 Enter Element 7 : 60 Enter Element 8 : 80 Enter Element 9 : 100 Enter Element 10 : 112 Cartesian tree Structure: 112 100 80 60 70 50 40 20 30 10 Inorder traversal of the tree 10 30 20 40 50 70 60 80 100 112
廣告
資料結構
網路
RDBMS
作業系統
Java
iOS
HTML
CSS
Android
Python
C 程式設計
C++
C#
MongoDB
MySQL
Javascript
PHP