計算 NumPy 中連續元素之間的差值並追加數字陣列


要計算掩碼陣列中連續元素之間的差值,請在 Python NumPy 中使用 **MaskedArray.ediff1d()** 方法。“**to_end**”引數設定要追加到返回差值末尾的數字陣列。

此函式等效於考慮掩碼值的 numpy.ediff1d,詳情請參見 numpy.ediff1d。

掩碼陣列是標準 numpy.ndarray 和掩碼的組合。掩碼可以是 nomask(表示關聯陣列中沒有無效值),也可以是布林陣列,用於確定關聯陣列中每個元素的值是否有效。

步驟

首先,匯入所需的庫:

import numpy as np

使用 numpy.array() 方法建立一個包含整數元素的陣列:

arr = np.array([[65, 68, 81], [93, 33, 76], [73, 88, 51], [62, 45, 67]])
print("Array...
", arr)

建立一個掩碼陣列並將其中的某些元素標記為無效:

maskArr = ma.masked_array(arr, mask =[[1, 0, 0], [ 0, 0, 0], [0, 1, 0], [0, 0, 0]])
print("
Our Masked Array...
", maskArr)

獲取掩碼陣列的型別:

print("
Our Masked Array type...
", maskArr.dtype)

獲取掩碼陣列的維度:

print("
Our Masked Array Dimensions...
",maskArr.ndim)

獲取掩碼陣列的形狀:

print("
Our Masked Array Shape...
",maskArr.shape)

獲取掩碼陣列的元素個數:

print("
Number of elements in the Masked Array...
",maskArr.size)

要計算掩碼陣列中連續元素之間的差值,請在 Python NumPy 中使用 MaskedArray.ediff1d() 方法。“to_end”引數設定要追加到返回差值末尾的數字陣列:

appendArr = np.array([996, 997, 998, 999])
print("
Result..
.", np.ediff1d(maskArr, to_end=appendArr))

示例

import numpy as np
import numpy.ma as ma

# Create an array with int elements using the numpy.array() method
arr = np.array([[65, 68, 81], [93, 33, 76], [73, 88, 51], [62, 45, 67]])
print("Array...
", arr) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[1, 0, 0], [ 0, 0, 0], [0, 1, 0], [0, 0, 0]]) print("
Our Masked Array...
", maskArr) # Get the type of the masked array print("
Our Masked Array type...
", maskArr.dtype) # Get the dimensions of the Masked Array print("
Our Masked Array Dimensions...
",maskArr.ndim) # Get the shape of the Masked Array print("
Our Masked Array Shape...
",maskArr.shape) # Get the number of elements of the Masked Array print("
Number of elements in the Masked Array...
",maskArr.size) # To compute the differences between consecutive elements of a masked array, use the MaskedArray.ediff1d() method in Python Numpy # The "to_end" parameter sets the array of number(s) to append at the end of the returned differences. appendArr = np.array([996, 997, 998, 999]) print("
Result..
.", np.ediff1d(maskArr, to_end=appendArr))

輸出

Array...
[[65 68 81]
[93 33 76]
[73 88 51]
[62 45 67]]

Our Masked Array...
[[-- 68 81]
[93 33 76]
[73 -- 51]
[62 45 67]]

Our Masked Array type...
int64

Our Masked Array Dimensions...
2

Our Masked Array Shape...
(4, 3)

Number of elements in the Masked Array...
12

Result..
. [ 3 13 12 -60 43 -3 15 -37 11 -17 22 996 997 998 999]

更新於:2022年2月5日

瀏覽量:132

開啟你的職業生涯

完成課程獲得認證

開始學習
廣告
© . All rights reserved.