Python Pandas - 建立一個帶有作為列的多重索引級別的資料框
若要建立一個將其多重索引級別作為列的資料框,請在 Pandas 中使用 to_frame() 方法。
首先,匯入必需的庫 −
import pandas as pd
多重索引是一個多級或層次的索引物件,適用於熊貓物件。建立陣列 −
arrays = [[1, 2, 3, 4], ['John', 'Tim', 'Jacob', 'Chris']]
“names”引數為每個索引級別設定名稱。from_arrays() 用於建立一個多重索引 −
multiIndex = pd.MultiIndex.from_arrays(arrays, names=('ranks', 'student'))
使用 to_frame() 建立一個帶有其多重索引級別作為列的資料框 −
dataFrame = multiIndex.to_frame()
示例
以下是程式碼 −
import pandas as pd # MultiIndex is a multi-level, or hierarchical, index object for pandas objects # Create arrays arrays = [[1, 2, 3, 4], ['John', 'Tim', 'Jacob', 'Chris']] # The "names" parameter sets the names for each of the index levels # The from_arrays() is used to create a MultiIndex multiIndex = pd.MultiIndex.from_arrays(arrays, names=('ranks', 'student')) # display the MultiIndex print("The Multi-index...\n",multiIndex) # get the levels in MultiIndex print("\nThe levels in Multi-index...\n",multiIndex.levels) # Create a DataFrame with the levels of the MultiIndex as columns using to_frame() dataFrame = multiIndex.to_frame() # Display the DataFrame print("\nThe DataFrame...\n",dataFrame)
輸出
這將產生以下輸出 −
The Multi-index... MultiIndex([(1, 'John'), (2, 'Tim'), (3, 'Jacob'), (4, 'Chris')], names=['ranks', 'student']) The levels in Multi-index... [[1, 2, 3, 4], ['Chris', 'Jacob', 'John', 'Tim']] The DataFrame... ranks student ranks student 1 John 1 John 2 Tim 2 Tim 3 Jacob 3 Jacob 4 Chris 4 Chris
廣告