Python Pandas - 將巢狀字典轉換成多索引資料幀
首先,讓我們建立一個巢狀字典 −
dictNested = {'Cricket': {'Boards': ['BCCI', 'CA', 'ECB'],'Country': ['India', 'Australia', 'England']},'Football': {'Boards': ['TFA', 'TCSA', 'GFA'],'Country': ['England', 'Canada', 'Germany'] }}
現在,建立一個空字典 −
new_dict = {}
現在,迴圈分配值 −
for outerKey, innerDict in dictNested.items(): for innerKey, values in innerDict.items(): new_dict[(outerKey, innerKey)] = values
轉換為多索引資料幀 −
pd.DataFrame(new_dict)
示例
以下是程式碼 −
import pandas as pd # Create Nested dictionary dictNested = {'Cricket': {'Boards': ['BCCI', 'CA', 'ECB'],'Country': ['India', 'Australia', 'England']},'Football': {'Boards': ['TFA', 'TCSA', 'GFA'],'Country': ['England', 'Canada', 'Germany'] }} print"\nNested Dictionary...\n",dictNested new_dict = {} for outerKey, innerDict in dictNested.items(): for innerKey, values in innerDict.items(): new_dict[(outerKey, innerKey)] = values # converting to multiindex dataframe print"\nMulti-index DataFrame...\n",pd.DataFrame(new_dict)
輸出
這將生成以下輸出 −
Nested Dictionary... {'Cricket': {'Country': ['India', 'Australia', 'England'], 'Boards': ['BCCI', 'CA', 'ECB']}, 'Football': {'Country': ['England', 'Canada', 'Germany'], 'Boards': ['TFA', 'TCSA', 'GFA']}} Multi-index DataFrame... Cricket Football Boards Country Boards Country 0 BCCI India TFA England 1 CA Australia TCSA Canada 2 ECB England GFA Germany
廣告