Python Pandas – 使用 notnull() 檢查空值
notnull() 方法返回一個布林值,即如果 DataFrame 具有空值,則返回 False,否則返回 True。
假設以下 CSV 檔案包含一些 NaN(即空值)−

首先,我們先讀取 CSV 檔案 −
dataFrame = pd.read_csv("C:\Users\amit_\Desktop\CarRecords.csv")檢查非空值 −
res = dataFrame.notnull()
現在,在顯示 DataFrame 時,CSV 資料將以 True 和 False(即布林值)的形式顯示,因為 notnull() 返回布林值。對於空值,將顯示 False。對於非空值,將顯示 True。
示例
以下是完整程式碼 −
import pandas as pd
# reading csv file
dataFrame = pd.read_csv("C:\Users\amit_\Desktop\CarRecords.csv")
print("DataFrame...\n",dataFrame)
# count the rows and columns in a DataFrame
print("\nNumber of rows and column in our DataFrame = ",dataFrame.shape)
res = dataFrame.notnull()
print("\nDataFrame displaying False for Null (NaN) value = \n",res)
dataFrame = dataFrame.dropna()
print("\nDataFrame after removing null values...\n",dataFrame)
print("\n(Updated) Number of rows and column in our DataFrame = ",dataFrame.shape)輸出
以下為輸出結果 −
DataFrame... Car Place UnitsSold 0 Audi Bangalore 80.0 1 Porsche Mumbai 110.0 2 RollsRoyce Pune NaN 3 BMW Delhi 200.0 4 Mercedes Hyderabad 80.0 5 Lamborghini Chandigarh NaN 6 Audi Mumbai NaN 7 Mercedes Pune 120.0 8 Lamborghini Delhi 100.0 Number of rows and column in our DataFrame = (9, 3) DataFrame displaying False for Null values = Car Place UnitsSold 0 True True True 1 True True True 2 True True False 3 True True True 4 True True True 5 True True False 6 True True False 7 True True True 8 True True True DataFrame after removing null values... Car Place UnitsSold 0 Audi Bangalore 80.0 1 Porsche Mumbai 110.0 3 BMW Delhi 200.0 4 Mercedes Hyderabad 80.0 7 Mercedes Pune 120.0 8 Lamborghini Delhi 100.0 (Updated)Number of rows and column in our DataFrame = (6, 3)
廣告
資料結構
網路
RDBMS
作業系統
Java
iOS
HTML
CSS
Android
Python
C 程式設計
C++
C#
MongoDB
MySQL
Javascript
PHP