Python – 對 Pandas DataFrame 中的列值進行分組並計算其和
我們考慮汽車銷售記錄,按月分組來計算每月汽車的註冊價格總額。要計算總額,我們使用 sum() 方法。
首先,假設以下是我們包含三列的 Pandas DataFrame −
dataFrame = pd.DataFrame(
{
"Car": ["Audi", "Lexus", "Tesla", "Mercedes", "BMW", "Toyota", "Nissan", "Bentley", "Mustang"],
"Date_of_Purchase": [
pd.Timestamp("2021-06-10"),
pd.Timestamp("2021-07-11"),
pd.Timestamp("2021-06-25"),
pd.Timestamp("2021-06-29"),
pd.Timestamp("2021-03-20"),
pd.Timestamp("2021-01-22"),
pd.Timestamp("2021-01-06"),
pd.Timestamp("2021-01-04"),
pd.Timestamp("2021-05-09")
],
"Reg_Price": [1000, 1400, 1100, 900, 1700, 1800, 1300, 1150, 1350]
}
)
在 groupby() 函式中使用 Grouper 選擇 Date_of_Purchase 列。頻次 freq 設定成 "M",按月進行分組,使用 sum() 函式計算總額 −
print"\nGroup Dataframe by month...\n",dataFrame.groupby(pd.Grouper(key='Date_of_Purchase', axis=0, freq='M')).sum()
示例
以下為程式碼 −
import pandas as pd
# dataframe with one of the columns as Date_of_Purchase
dataFrame = pd.DataFrame(
{
"Car": ["Audi", "Lexus", "Tesla", "Mercedes", "BMW", "Toyota", "Nissan", "Bentley", "Mustang"],
"Date_of_Purchase": [
pd.Timestamp("2021-06-10"),
pd.Timestamp("2021-07-11"),
pd.Timestamp("2021-06-25"),
pd.Timestamp("2021-06-29"),
pd.Timestamp("2021-03-20"),
pd.Timestamp("2021-01-22"),
pd.Timestamp("2021-01-06"),
pd.Timestamp("2021-01-04"),
pd.Timestamp("2021-05-09")
],
"Reg_Price": [1000, 1400, 1100, 900, 1700, 1800, 1300, 1150, 1350]
}
)
print"DataFrame...\n",dataFrame
# Grouper to select Date_of_Purchase column within groupby function
# calculation the sum month-wise
print"\nGroup Dataframe by month...\n",dataFrame.groupby(pd.Grouper(key='Date_of_Purchase', axis=0, freq='M')).sum()
輸出
將產生以下輸出 −
DataFrame...
Car Date_of_Purchase Reg_Price
0 Audi 2021-06-10 1000
1 Lexus 2021-07-11 1400
2 Tesla 2021-06-25 1100
3 Mercedes 2021-06-29 900
4 BMW 2021-03-20 1700
5 Toyota 2021-01-22 1800
6 Nissan 2021-01-06 1300
7 Bentley 2021-01-04 1150
8 Mustang 2021-05-09 1350
Group Dataframe by month...
Reg_Price
Date_of_Purchase
2021-01-31 4250.0
2021-02-28 NaN
2021-03-31 1700.0
2021-04-30 NaN
2021-05-31 1350.0
2021-06-30 3000.0
2021-07-31 1400.0
廣告
資料結構
網路
RDBMS
作業系統
Java
iOS
HTML
CSS
Android
Python
C 程式設計
C++
C#
MongoDB
MySQL
Javascript
PHP