最大化每個索引僅屬於一個子序列的長度為 3 的迴文子序列的數量
在本文中,我們將深入探討一個與字串操作和各種程式語言中的動態規劃相關的有趣問題。我們今天討論的問題是“最大化每個索引僅屬於一個子序列的長度為 3 的迴文子序列的數量”。
問題陳述
給定一個字串,任務是找到最大數量的長度為 3 的迴文子序列,使得字串中的每個索引都是單個子序列的一部分。
長度為 3 的迴文子序列是形式為“aba”的子序列,其中'a'和'b'是任意字元。
解決方案方法
為了解決這個問題,我們將計算字串中每個字元的頻率。然後,我們將選擇出現頻率最高的字元。我們將用這個字元儘可能多地形成長度為 3 的迴文子序列。每個子序列將由選定的字元、任何其他字元以及再次出現的選定字元組成。
示例
以下是解決此問題的程式 -
#include <stdio.h> #include <string.h> #include <stdlib.h> // Include for malloc #define CHAR_MAX 256 // Maximum possible characters in the ASCII character set // Function to find the maximum count of 3-length palindromic subsequences in the input string int maxPalindromeSubsequences(char* str) { int* count = (int*)malloc(sizeof(int) * CHAR_MAX); // Dynamically allocate memory for the array // Initialize the count array to 0 for (int i = 0; i < CHAR_MAX; i++) { count[i] = 0; } // Count the occurrences of each character in the string for (int i = 0; i < strlen(str); i++) { count[str[i]]++; } int maxCount = 0; // Iterate through the count array to find the maximum count of 3-length palindromic subsequences for (int i = 0; i < CHAR_MAX; i++) { if (count[i] >= 2) { int subseqCount = count[i] / 2; if (subseqCount > maxCount) { maxCount = subseqCount; } } } free(count); // Free the dynamically allocated memory return maxCount; // Return the maximum count of 3-length palindromic subsequences } int main() { char str[] = "abcaaadcb"; int result = maxPalindromeSubsequences(str); printf("The maximum count of 3-length palindromic subsequences is: %d\n", result); return 0; }
輸出
The maximum count of 3-length palindromic subsequences is: 2
#include <iostream> #include <string> #include <algorithm> using namespace std; int maxPalindromeSubsequences(string str) { const int CHAR_MAX = 256; int count[CHAR_MAX] = {0}; for (int i=0; i<str.size(); i++) { count[str[i]]++; } return *max_element(count, count + CHAR_MAX) / 2; } int main() { string str = "abcaaadcb"; int result = maxPalindromeSubsequences(str); cout << "The maximum count of 3-length palindromic subsequences is: " << result << endl; return 0; }
輸出
The maximum count of 3-length palindromic subsequences is: 2
import java.util.Arrays; public class MaxPalindromeSubsequences { // Function to find the maximum count of 3-length palindromic subsequences in the input string public static int maxPalindromeSubsequences(String str) { final int CHAR_MAX = 256; // Maximum possible characters in the ASCII character set int[] count = new int[CHAR_MAX]; // Array to store the count of each character in the string // Count the occurrences of each character in the string for (int i = 0; i < str.length(); i++) { count[str.charAt(i)]++; } int maxCount = 0; // Iterate through the count array to find the maximum count of 3-length palindromic subsequences for (int i = 0; i < CHAR_MAX; i++) { if (count[i] >= 2) { maxCount = Math.max(maxCount, count[i] / 2); } } return maxCount; // Return the maximum count of 3-length palindromic subsequences } public static void main(String[] args) { String str = "abcaaadcb"; int result = maxPalindromeSubsequences(str); System.out.println("The maximum count of 3-length palindromic subsequences is: " + result); } }
輸出
The maximum count of 3-length palindromic subsequences is: 2
def max_palindrome_subsequences(s): CHAR_MAX = 256 # Maximum possible characters in the ASCII character set count = [0] * CHAR_MAX # List to store the count of each character in the string # Count the occurrences of each character in the string for char in s: count[ord(char)] += 1 max_count = 0 # Iterate through the count list to find the maximum count of 3-length palindromic subsequences for freq in count: if freq >= 2: max_count = max(max_count, freq // 2) return max_count # Return the maximum count of 3-length palindromic subsequences if __name__ == "__main__": s = "abcaaadcb" result = max_palindrome_subsequences(s) print("The maximum count of 3-length palindromic subsequences is:", result)
輸出
The maximum count of 3-length palindromic subsequences is: 2
帶測試用例的解釋
讓我們考慮字串“abcaaadcb”。
當此字串傳遞給 maxPalindromeSubsequences 函式時,它首先計算字串中每個字元的頻率:{'a': 4, 'b': 2, 'c': 2, 'd': 1}。
然後它找到出現頻率最高的字元,即頻率為 4 的'a'。
為了最大化長度為 3 的迴文子序列的數量,它使用字元'a'儘可能多地形成子序列。每個子序列都包含'a'、任何其他字元以及再次出現的'a'。
由於'a'出現了 4 次,因此它可以形成 2 個這樣的子序列,“aba”和“aca”。
因此,函式返回 2。
結論
此問題展示了我們如何使用頻率計數和選擇策略來解決複雜的字串操作問題。這是一個練習和提高你的 C++ 編碼技能的絕佳問題。
廣告