在 NumPy 中沿軸 0 連線掩碼陣列序列


要沿軸 0 連線掩碼陣列序列,請在 Python NumPy 中使用 **ma.stack()** 方法。軸是使用“**axis**”引數設定的。axis 引數指定結果維度中新軸的索引。例如,如果 axis=0,它將是第一個維度,如果 axis=-1,它將是最後一個維度。

如果提供 out 引數,則它是放置結果的目標位置。形狀必須正確,與如果沒有指定 out 引數則 stack 將返回的形狀匹配。

該函式返回的堆疊陣列比輸入陣列多一個維度。它適用於 _data 和 _mask(如果有)。

步驟

首先,匯入所需的庫 -

import numpy as np
import numpy.ma as ma

建立陣列 1,一個使用 numpy.arange() 方法的 3x3 陣列,其中包含 int 元素 -

arr1 = np.arange(9).reshape((3,3))
print("Array1...
", arr1) print("
Array type...
", arr1.dtype)

建立一個掩碼陣列 1 -

arr1 = ma.array(arr1)

掩碼陣列 1 -

arr1[0, 1] = ma.masked
arr1[1, 1] = ma.masked

顯示掩碼陣列 1 -

print("
Masked Array1...
",arr1)

建立陣列 2,另一個使用 numpy.arange() 方法的 3x3 陣列,其中包含 int 元素 -

arr2 = np.arange(9).reshape((3,3))
print("
Array2...
", arr2) print("
Array type...
", arr2.dtype)

建立一個掩碼陣列 2 -

arr2 = ma.array(arr2)

掩碼陣列 2 -

arr2[2, 1] = ma.masked
arr2[2, 2] = ma.masked

顯示掩碼陣列 2 -

print("
Masked Array2...
",arr2)

要沿特定軸連線掩碼陣列序列,請使用 ma.stack() 方法。軸是使用“axis”引數設定的 -

print("
Result of joining arrays...
",ma.stack((arr1, arr2), axis = 0))

示例

import numpy as np
import numpy.ma as ma

# Array 1
# Creating a 3x3 array with int elements using the numpy.arange() method
arr1 = np.arange(9).reshape((3,3))
print("Array1...
", arr1) print("
Array type...
", arr1.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr1.ndim) # Get the shape of the Array print("
Our Array Shape...
",arr1.shape) # Get the number of elements of the Array print("
Elements in the Array...
",arr1.size) # Create a masked array arr1 = ma.array(arr1) # Mask Array1 arr1[0, 1] = ma.masked arr1[1, 1] = ma.masked # Display Masked Array 1 print("
Masked Array1...
",arr1) # Array 2 # Creating another 3x3 array with int elements using the numpy.arange() method arr2 = np.arange(9).reshape((3,3)) print("
Array2...
", arr2) print("
Array type...
", arr2.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr2.ndim) # Get the shape of the Array print("
Our Array Shape...
",arr2.shape) # Get the number of elements of the Array print("
Elements in the Array...
",arr2.size) # Create a masked array arr2 = ma.array(arr2) # Mask Array2 arr2[2, 1] = ma.masked arr2[2, 2] = ma.masked # Display Masked Array 2 print("
Masked Array2...
",arr2) # To join a sequence of masked arrays along specific axis, use the ma.stack() method in Python Numpy # The axis is set using the "axis" parameter print("
Result of joining arrays...
",ma.stack((arr1, arr2), axis = 0))

輸出

Array1...
[[0 1 2]
[3 4 5]
[6 7 8]]

Array type...
int64

Array Dimensions...
2

Our Array Shape...
(3, 3)

Elements in the Array...
9

Masked Array1...
[[0 -- 2]
[3 -- 5]
[6 7 8]]

Array2...
[[0 1 2]
[3 4 5]
[6 7 8]]

Array type...
int64

Array Dimensions...
2

Our Array Shape...
(3, 3)

Elements in the Array...
9

Masked Array2...
[[0 1 2]
[3 4 5]
[6 -- --]]

Result of joining arrays...
[[[0 -- 2]
[3 -- 5]
[6 7 8]]
[[0 1 2]
[3 4 5]
[6 -- --]]]

更新於: 2022 年 2 月 4 日

107 次檢視

開啟你的 職業生涯

透過完成課程獲得認證

開始學習
廣告

© . All rights reserved.