如何在R中建立具有給定機率的二元隨機變數?
為了在R中建立具有給定機率的二元隨機變數,我們可以使用rbinom函式,其中包含樣本大小引數n、成功次數引數size和機率引數prob。要了解如何做到這一點,請檢視下面的示例。
示例1
使用rbinom函式建立向量,其中n = 500,size = 1,prob = 0.05,如下所示:
x1<-rbinom(n=500,size=1,prob=0.05) x1
輸出
執行上述指令碼後,將生成以下輸出(由於隨機化,此輸出在您的系統上會有所不同):
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [38] 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [75] 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [112] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 [149] 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [186] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 [223] 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [260] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [297] 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 [334] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [371] 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [408] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 [445] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 [482] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
示例2
使用rbinom函式建立向量,其中n = 500,size = 1,prob = 0.10,如下所示:
x2<-rbinom(n=500,size=1,prob=0.10) x2
輸出
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [38] 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 [75] 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 [112] 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [149] 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 [186] 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 [223] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 [260] 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 [297] 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [334] 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 [371] 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 [408] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [445] 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 [482] 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1
示例3
使用rbinom函式建立向量,其中n = 500,size = 1,prob = 0.50,如下所示:
x3<-rbinom(n=500,size=1,prob=0.50) x3
輸出
[1] 1 0 1 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 [38] 0 1 0 1 0 1 1 1 1 0 0 1 1 1 1 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 [75] 0 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 0 0 1 0 1 0 0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 [112] 1 0 1 0 1 1 0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 0 1 0 1 [149] 0 1 1 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 1 0 0 0 0 1 1 [186] 1 1 1 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 0 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0 [223] 0 1 0 1 1 0 1 1 1 1 0 0 1 1 1 0 1 0 1 0 0 0 1 1 0 0 0 1 1 0 0 1 0 1 1 0 0 [260] 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 0 1 0 0 1 1 0 1 1 1 1 [297] 0 0 0 1 1 0 1 0 0 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 0 [334] 1 1 0 0 1 1 1 0 1 0 0 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 [371] 1 1 1 1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 1 [408] 1 1 1 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 0 0 0 1 1 0 1 1 0 1 0 0 0 1 1 0 1 [445] 1 0 1 0 1 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 [482] 1 1 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 0 0
示例4
使用rbinom函式建立向量,其中n = 500,size = 1,prob = 0.90,如下所示:
x4<-rbinom(n=500,size=1,prob=0.90) x4
輸出
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 1 0 1 1 [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [75] 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [112] 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 [149] 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 [186] 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 1 0 1 [223] 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 0 1 1 1 1 0 1 [260] 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 1 1 1 [297] 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 [334] 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 [371] 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 [408] 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 [445] 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 [482] 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1
廣告
資料結構
網路
關係資料庫管理系統
作業系統
Java
iOS
HTML
CSS
Android
Python
C語言程式設計
C++
C#
MongoDB
MySQL
Javascript
PHP