如何使用 Python 中的 TensorFlow 查詢資料集預處理層的狀態?
TensorFlow 是 Google 提供的一個機器學習框架。它是一個開源框架,與 Python 結合使用以實現演算法、深度學習應用程式等等。它用於研究和生產目的。它具有最佳化技術,有助於快速執行復雜的數學運算。
這是因為它使用了 NumPy 和多維陣列。這些多維陣列也稱為“張量”。該框架支援使用深度神經網路。它具有高度可擴充套件性,並附帶許多流行的資料集。它使用 GPU 計算並自動管理資源。它附帶大量機器學習庫,並且得到良好的支援和記錄。該框架能夠執行深度神經網路模型、訓練它們並建立預測相應資料集相關特徵的應用程式。
可以使用以下程式碼行在 Windows 上安裝“tensorflow”包:
pip install tensorflow
張量是 TensorFlow 中使用的資料結構。它有助於連線資料流圖中的邊。此資料流圖稱為“資料流圖”。張量只不過是多維陣列或列表。
我們使用 Google Colaboratory 來執行以下程式碼。Google Colab 或 Colaboratory 幫助在瀏覽器上執行 Python 程式碼,並且無需任何配置即可免費訪問 GPU(圖形處理單元)。Colaboratory 是建立在 Jupyter Notebook 之上的。以下是程式碼片段:
示例
print("A text-only dataset without labels is prepared")
train_text = raw_train_ds.map(lambda text, labels: text)
print("The adapt method is called")
binary_vectorize_layer.adapt(train_text)
int_vectorize_layer.adapt(train_text)
print("The result is displayed on the console")
def binary_vectorize_text(text, label):
text = tf.expand_dims(text, -1)
return binary_vectorize_layer(text), label程式碼來源 - https://www.tensorflow.org/tutorials/load_data/text
輸出
A text-only dataset without labels is prepared The adapt method is called The result is displayed on the console
解釋
準備了不使用標籤的資料集。
在此資料上呼叫了一個名為“adapt”的方法。
這將使用模型的“二進位制”格式對資料集進行向量化。
廣告
資料結構
網路
關係資料庫管理系統
作業系統
Java
iOS
HTML
CSS
Android
Python
C 程式設計
C++
C#
MongoDB
MySQL
Javascript
PHP