使用Python字典生成圖
可以使用Python中的字典來實現圖。在字典中,每個鍵將是頂點,其值將是連線頂點的列表。因此,整個結構將類似於圖G(V, E)的鄰接表。
我們可以使用基本的字典物件,但我們使用的是defaultdict。它有一些附加功能。它有一個額外的可寫例項變數。
我們提供了一個文字檔案,其中包含頂點的數量、邊的數量、頂點的名稱以及邊的列表。對於無向圖,我們提供兩條邊,例如(u,v)和(v,u)。
我們在本例中使用此圖。

圖的檔案如下所示:
Graph_Input.txt
6 8 A|B|C|D|E|F A,B B,A A,C C,A B,D D,B B,E E,B C,E E,C D,E E,D D,F F,D E,F F,E
所以首先,我們獲取頂點的名稱,然後讀取邊並插入到列表中。
示例程式碼
from collections import defaultdict defcreate_graph(filename): graph = defaultdict(list) #create dict with keys and corresponding lists with open(filename, 'r') as graph_file: vertex = int(graph_file.readline()) edges = int(graph_file.readline()) vert_Names = graph_file.readline() vert_Names = vert_Names.rstrip('\n') #Remove the trailing new line character nodes = vert_Names.split('|') #Cut the vertex names for node in nodes: #For each vertex, create empty list graph[node] = [] #Read edges from file and fill the lists for line in graph_file: line = line.rstrip('\n') #Remove the trailing new line character edge = line.split(',') graph[edge[0]].append(edge[1]) #The edge[0] is source and edge[1] is dest return graph my_graph = create_graph('Graph_Input.txt') for node in my_graph.keys(): #Print the graph print(node + ': ' + str(my_graph[node]))
輸出
A: ['B', 'C'] B: ['A', 'D', 'E'] C: ['A', 'E'] D: ['B', 'E', 'F'] E: ['B', 'C', 'D', 'F'] F: ['D', 'E']
現在我們將看到給定圖G(V,E)上的一些基本操作。首先我們將看到如何從源頂點到目標頂點獲取路徑。給定的程式碼是此操作的一部分。要執行它,您必須使用先前的方法生成圖。
示例程式碼
#Function to find path from source to destination defget_path(graph, src, dest, path = []): path = path + [src] if src == dest: #when destination is found, stop the process return path for vertex in graph[src]: if vertex not in path: path_new = get_path(graph, vertex, dest, path) if path_new: return path_new return None my_graph = create_graph('Graph_Input.txt') path = get_path(my_graph, 'A', 'C') print('Path From Node A to C: ' + str(path))
輸出
Path From Node A to C: ['A', 'B', 'D', 'E', 'C']
現在我們將看到如何從源頂點到目標頂點獲取所有可能的路徑。給定的程式碼是此操作的一部分。要執行它,您必須使用先前的方法生成圖。
示例程式碼
#Function to find all paths from source to destination defget_all_path(graph, src, dest, path = []): path = path + [src] if src == dest: #when destination is found, stop the process return [path] paths = [] new_path_list = [] for vertex in graph[src]: if vertex not in path: new_path_list = get_all_path(graph, vertex, dest, path) for new_path in new_path_list: paths.append(new_path) return paths my_graph = create_graph('Graph_Input.txt') paths = get_all_path(my_graph, 'A', 'C') print('All Paths From Node A to C: ') for path in paths: print(path)
輸出
All Paths From Node A to C: ['A', 'B', 'D', 'E', 'C'] ['A', 'B', 'D', 'E', 'C'] ['A', 'B', 'D', 'F', 'E', 'C'] ['A', 'B', 'D', 'F', 'E', 'C'] ['A', 'B', 'D', 'F', 'E', 'C'] ['A', 'B', 'E', 'C'] ['A', 'C']
最後,我們將看到如何獲得從源頂點到目標頂點的最短路徑。給定的程式碼是此操作的一部分。要執行它,您必須使用先前的方法生成圖。
示例程式碼
#Function to find shortest path from source to destination def get_shortest_path(graph, src, dest, path = []): path = path + [src] if src == dest: #when destination is found, stop the process return path short = None for vertex in graph[src]: if vertex not in path: new_path_list = get_shortest_path(graph, vertex, dest, path) if new_path_list: if not short or len(new_path_list) <len(short): short = new_path_list return short my_graph = create_graph('Graph_Input.txt') path = get_shortest_path(my_graph, 'A', 'C') print('Shortest Paths From Node A to C: ' + str(path))
輸出
Shortest Paths From Node A to C: ['A', 'C']
廣告