計算下列每個式子的值
(a) $(-30) \div 10$
(b) $50 \div (-5)$
(c) $(-36) \div (-9)$
(d) $(-49) \div (49)$
(e) $13 \div [(-2) + 1]$
(f) $0 \div (-12)$
(g) $(-31) \div [(-30) + (-1)]$
(h) $[(-36)\div 12] \div 3$
(i) $[(-6) + 5] \div [(-2) + 1]$


解題步驟

我們需要計算給定的表示式。

解答

我們知道:

$a \div b=a \times \frac{1}{b}$

因此:

(a) $(-30) \div 10$

$=(-30)\times \frac{1}{10}$

$=-3$

(b) $50 \div (-5)$

$=50\times (-\frac{1}{5})$

$=-\frac{50}{5}$

$=-10$

(c) $(-36) \div (-9)$

$=(-36)\times\frac{1}{-9}$

$=\frac{-36}{-9}$

$=4$

(d) $(-49) \div (49)$

$=(-49)\times \frac{1}{49}$

$=-1$

(e) $13 \div [(-2) + 1]$

$=13\div [-2+1]$

$=13\div [-1]$

$=13\times \frac{1}{-1}$

$=-13$

(f) $0 \div (-12)$

$=0\times\frac{1}{-12}$

$=\frac{0}{-12}$

$=0$

(g) $(-31) \div [(-30) + (-1)]$

$=-31\div [-30-1]$

$=-31\div [-31]$

$=-31\times (-\frac{1}{31})$

$=\frac{-31}{-31}$

$=1$

(h) $[(-36) \div 12] \div 3$

$=[-36\div 12]\div 3$

$=[-36\times\frac{1}{12}]\div 3$

$=[\frac{-36}{12}]\div 3$

$=[-3]\div 3$

$=(-3)\times\frac{1}{3}$

$=-\frac{3}{3}$

$=-1$

(i) $[(-6) + 5] \div [(-2) + 1]$

$=[-6+5]\div[-2+1]$

$=[-1]\div [-1]$

$=-1\times \frac{1}{-1}$

$=\frac{-1}{-1}$

$=1$

更新於:2022年10月10日

56 次瀏覽

開啟你的職業生涯

完成課程獲得認證

開始學習
廣告