實現 Treap 的 C++ 程式


這是一個實現 Treap 的 C++ 程式。Treap 資料結構基本上是一個隨機的二叉查詢樹。在這裡,我們考慮以此為基礎進行插入、刪除和搜尋操作。

函式及說明


用於左旋的函式 rotLeft()首先旋轉樹,然後設定新根。
用於右旋的函式 rotRight()首先旋轉樹,然後設定新根。


函式 insetNod() 用於遞迴地將給定鍵值及優先順序插入到 Treap 中 -

If root = nullptr
   return data as root.
If given data is less then root node,
   Insert data in left subtree.
   Rotate left if heap property violated.
else
   Insert data in right subtree.
   Rotate right if heap property violated.

函式 searchNod() 用於遞迴地搜尋 Treap 中的鍵值 -

If key is not present return false.
If key is present return true.
If key is less than root, search in left subtree.
Else
   search in right subtree.

函式 deleteNod() 用於遞迴地從 Treap 中刪除鍵值 -

If key is not present return false
If key is present return true.
If key is less than root, go to left subtree.
Else
   Go to right subtree.
If key is found:
   node to be deleted which is a leaf node
      deallocate the memory and update root to null.
      delete root.
   node to be deleted which has two children
      if left child has less priority than right child
         call rotLeft() on root
         recursively delete the left child
      else
         call rotRight() on root
         recursively delete the right child
   node to be deleted has only one child
         find child node
      deallocate the memory
   Print the result.
End

示例

#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;
struct TreapNod  { //node declaration
   int data;
   int priority;
   TreapNod* l, *r;
   TreapNod(int d) { //constructor
      this->data = d;
      this->priority = rand() % 100;
      this->l= this->r = nullptr;
   }
};
void rotLeft(TreapNod* &root) { //left rotation
   TreapNod* R = root->r;
   TreapNod* X = root->r->l;
   R->l = root;
   root->r= X;
   root = R;
}
void rotRight(TreapNod* &root) { //right rotation
   TreapNod* L = root->l;
   TreapNod* Y = root->l->r;
   L->r = root;
   root->l= Y;
   root = L;
}
void insertNod(TreapNod* &root, int d) { //insertion
   if (root == nullptr) {
      root = new TreapNod(d);
      return;
   }
   if (d < root->data) {
      insertNod(root->l, d);
      if (root->l != nullptr && root->l->priority > root->priority)
      rotRight(root);
   } else {
      insertNod(root->r, d);
      if (root->r!= nullptr && root->r->priority > root->priority)
      rotLeft(root);
   }
}
bool searchNod(TreapNod* root, int key) {
   if (root == nullptr)
      return false;
   if (root->data == key)
      return true;
   if (key < root->data)
      return searchNod(root->l, key);
      return searchNod(root->r, key);
}
void deleteNod(TreapNod* &root, int key) {
   //node to be deleted which is a leaf node
   if (root == nullptr)
      return;
   if (key < root->data)
      deleteNod(root->l, key);
   else if (key > root->data)
      deleteNod(root->r, key);
      //node to be deleted which has two children
   else {
      if (root->l ==nullptr && root->r == nullptr) {
         delete root;
         root = nullptr;
      }
      else if (root->l && root->r) {
         if (root->l->priority < root->r->priority) {
            rotLeft(root);
            deleteNod(root->l, key);
         } else {
            rotRight(root);
            deleteNod(root->r, key);
         }
      }
      //node to be deleted has only one child
      else {
         TreapNod* child = (root->l)? root->l: root->r;
         TreapNod* curr = root;
         root = child;
         delete curr;
      }
   }
}
void displayTreap(TreapNod *root, int space = 0, int height =10) { //display treap
   if (root == nullptr)
      return;
   space += height;
   displayTreap(root->l, space);
   cout << endl;
   for (int i = height; i < space; i++)
      cout << ' ';
      cout << root->data << "(" << root->priority << ")\n";
      cout << endl;
   displayTreap(root->r, space);
}
int main() {
   int nums[] = {1,7,6,4,3,2,8,9,10 };
   int a = sizeof(nums)/sizeof(int);
   TreapNod* root = nullptr;
   srand(time(nullptr));
   for (int n: nums)
      insertNod(root, n);
   cout << "Constructed Treap:\n\n";
   displayTreap(root);
   cout << "\nDeleting node 8:\n\n";
   deleteNod(root, 8);
   displayTreap(root);
   cout << "\nDeleting node 3:\n\n";
   deleteNod(root, 3);
   displayTreap(root);
   return 0;
}

輸出

Constructed Treap:

1(12)

2(27)

3(97)

4(46)

6(75)

7(88)

8(20)

9(41)

10(25)

Deleting node 8:

1(12)

2(27)

3(97)

4(46)

6(75)

7(88)

9(41)

10(25)

Deleting node 3:

1(12)

2(27)

4(46)

6(75)

7(88)

9(41)

10(25)

更新於:2019 年 7 月 30 日

超過 1 千次瀏覽

開啟您的 職業生涯

完成課程可獲得認證

開始
廣告