C++ 程式以查詢圖的傳遞閉包
如果給定了一個有向圖,判斷在給定的圖中,對於所有頂點對 (i, j),頂點 j 是否可以從另一個頂點 i 處到達。可到達意味著從頂點 i 到 j 有路徑。這個可達矩陣被稱為圖的傳遞閉包。Warshall 演算法常用於查詢指定圖 G 的傳遞閉包。下面是一個 C++ 程式來實現此演算法。
演算法
Begin 1. Take maximum number of nodes as input. 2. For Label the nodes as a, b, c….. 3. To check if there any edge present between the nodes make a for loop: // ASCII code of a is 97 for i = 97 to (97 + n_nodes)-1 for j = 97 to (97 + n_nodes)-1 If edge is present do, adj[i - 97][j - 97] = 1 else adj[i - 97][j - 97] = 0 End loop End loop. 4. To print the transitive closure of graph: for i = 0 to n_nodes-1 c = 97 + i End loop. for i = 0 to n_nodes-1 c = 97 + i for j = 0 to n_nodes-1 Print adj[I][j] End loop End loop End
示例
#include<iostream> using namespace std; const int n_nodes = 20; int main() { int n_nodes, k, n; char i, j, res, c; int adj[10][10], path[10][10]; cout << "\n\tMaximum number of nodes in the graph :"; cin >> n; n_nodes = n; cout << "\nEnter 'y' for 'YES' and 'n' for 'NO' \n"; for (i = 97; i < 97 + n_nodes; i++) for (j = 97; j < 97 + n_nodes; j++) { cout << "\n\tIs there an edge from " << i << " to " << j << " ? "; cin >> res; if (res == 'y') adj[i - 97][j - 97] = 1; else adj[i - 97][j - 97] = 0; } cout << "\n\nTransitive Closure of the Graph:\n"; cout << "\n\t\t\t "; for (i = 0; i < n_nodes; i++) { c = 97 + i; cout << c << " "; } cout << "\n\n"; for (int i = 0; i < n_nodes; i++) { c = 97 + i; cout << "\t\t\t" << c << " "; for (int j = 0; j < n_nodes; j++) cout << adj[i][j] << " "; cout << "\n"; } return 0; }
輸出
Maximum number of nodes in the graph :4 Enter 'y' for 'YES' and 'n' for 'NO' Is there an edge from a to a ? y Is there an edge from a to b ?y Is there an edge from a to c ? n Is there an edge from a to d ? n Is there an edge from b to a ? y Is there an edge from b to b ? n Is there an edge from b to c ? y Is there an edge from b to d ? n Is there an edge from c to a ? y Is there an edge from c to b ? n Is there an edge from c to c ? n Is there an edge from c to d ? n Is there an edge from d to a ? y Is there an edge from d to b ? n Is there an edge from d to c ? y Is there an edge from d to d ? n Transitive Closure of the Graph: a b c d a 1 1 0 0 b 1 0 1 0 c 1 0 0 0 d 1 0 1 0
廣告