C++ 程式,用來求 n 個數的 GCD 和 LCM


這是求 n 個數的 GCD 和 LCM 的程式碼。兩個或多個大於 0 的整數的 GCD 或最大公因子是能同時整除每個整數的最大整數。GCD 也稱為最大公因數。

兩個數的最小公倍數 (LCM) 是既是這兩個數的倍數的最小數(不為零)。

演算法

Begin
   Take two numbers as input
   Call the function gcd() two find out gcd of n numbers
   Call the function lcm() two find out lcm of n numbers
   gcd(number1, number2)
   Declare r, a, b
   Assign r=0
   a = (number1 greater than number2)? number1: number2
   b = (number1 less than number2)? number1: number2
   r = b
   While (a mod b not equal to 0)
      Do
         r = a mod b
         a=b
         b=r
      Return r
   Done
   lcm(number1, number2)
   Declare a
   a=(number1 greater than number2)?number1:number2
   While(true) do
   If
      (a mod number1 == 0 and a number2 == 0)
      Return a
      Increment a
   Done
End

示例程式碼

#include<iostream>
using namespace std;
int gcd(int m, int n) {
   int r = 0, a, b;
   a = (m > n) ? m : n;
   b = (m < n) ? m : n;
   r = b;
   while (a % b != 0) {
      r = a % b;
      a = b;
      b = r;
   }
   return r;
}
int lcm(int m, int n) {
   int a;
   a = (m > n) ? m: n;
   while (true) {
      if (a % m == 0 && a % n == 0)
         return a;
         ++a;
   }
}
int main(int argc, char **argv) {
   cout << "Enter the two numbers: ";
   int m, n;
   cin >> m >> n;
   cout << "The GCD of two numbers is: " << gcd(m, n) << endl;
   cout << "The LCM of two numbers is: " << lcm(m, n) << endl;
   return 0;
}

輸出

Enter the two numbers:
7
6
The GCD of two numbers is: 1
The LCM of two numbers is: 42

更新於: 30-Jul-2019

4K+ 瀏覽量

開啟你的職業生涯

完成課程以獲得認證

開始
廣告