使用Numpy將輸入轉換為至少三維的陣列
要將輸入轉換為至少三維的陣列,請在Python Numpy中使用**ma.atleast_3d()**方法。引數是一個或多個類陣列序列。非陣列輸入將轉換為陣列。已經具有三個或更多維度的陣列將被保留。
該函式返回一個數組或陣列列表,每個陣列的a.ndim >= 3。儘可能避免複製,並返回具有三個或更多維度的檢視。例如,形狀為(N,)的一維陣列將成為形狀為(1, N, 1)的檢視,形狀為(M, N)的二維陣列將成為形狀為(M, N, 1)的檢視。它應用於_data和_mask(如果存在)。
步驟
首先,匯入所需的庫:
import numpy as np import numpy.ma as ma
使用numpy.array()方法建立一個包含整數元素的陣列:
arr = np.array([[65, 68, 81], [93, 33, 39], [73, 88, 51], [62, 45, 67]])
print("Array...
", arr)
print("
Array type...
", arr.dtype)獲取陣列的維度:
print("
Array Dimensions...
",arr.ndim)
建立一個掩碼陣列並將其中一些標記為無效:
maskArr = ma.masked_array(arr, mask =[[1, 1, 0], [ 1, 0, 0], [0, 1, 0], [0, 1, 0]])
print("
Our Masked Array
", maskArr)
print("
Our Masked Array type...
", maskArr.dtype)獲取掩碼陣列的維度:
print("
Our Masked Array Dimensions...
",maskArr.ndim)
獲取掩碼陣列的形狀:
print("
Our Masked Array Shape...
",maskArr.shape)獲取掩碼陣列的元素數量:
print("
Elements in the Masked Array...
",maskArr.size)
要將輸入轉換為至少三維的陣列,請在Python Numpy中使用ma.atleast_3d()方法:
print("
Result...
",np.atleast_3d(1, maskArr))示例
import numpy as np
import numpy.ma as ma
# Create an array with int elements using the numpy.array() method
arr = np.array([[65, 68, 81], [93, 33, 39], [73, 88, 51], [62, 45, 67]])
print("Array...
", arr)
print("
Array type...
", arr.dtype)
# Get the dimensions of the Array
print("
Array Dimensions...
",arr.ndim)
# Create a masked array and mask some of them as invalid
maskArr = ma.masked_array(arr, mask =[[1, 1, 0], [ 1, 0, 0], [0, 1, 0], [0, 1, 0]])
print("
Our Masked Array
", maskArr)
print("
Our Masked Array type...
", maskArr.dtype)
# Get the dimensions of the Masked Array
print("
Our Masked Array Dimensions...
",maskArr.ndim)
# Get the shape of the Masked Array
print("
Our Masked Array Shape...
",maskArr.shape)
# Get the number of elements of the Masked Array
print("
Elements in the Masked Array...
",maskArr.size)
# To convert inputs to arrays with at least three dimensions, use the ma.atleast_3d() method in Python Numpy
print("
Result...
",np.atleast_3d(1, maskArr))輸出
Array... [[65 68 81] [93 33 39] [73 88 51] [62 45 67]] Array type... int64 Array Dimensions... 2 Our Masked Array [[-- -- 81] [-- 33 39] [73 -- 51] [62 -- 67]] Our Masked Array type... int64 Our Masked Array Dimensions... 2 Our Masked Array Shape... (4, 3) Elements in the Masked Array... 12 Result... [array([[[1]]]), masked_array( data=[[[--], [--], [81]], [[--], [33], [39]], [[73], [--], [51]], [[62], [--], [67]]], mask=[[[ True], [ True], [False]], [[ True], [False], [False]], [[False], [ True], [False]], [[False], [ True], [False]]], fill_value=999999)]
廣告
資料結構
網路
關係資料庫管理系統 (RDBMS)
作業系統
Java
iOS
HTML
CSS
Android
Python
C語言程式設計
C++
C#
MongoDB
MySQL
Javascript
PHP