二維陣列中的峰值元素
當一個元素大於或等於其四個相鄰元素時,我們稱之為峰值元素。其相鄰元素包括上、下、左、右四個方向的元素。對於這個問題,我們將考慮一些邊界情況。我們不會將對角線元素視為相鄰元素。一個矩陣中可能存在多個峰值元素,而且峰值元素不一定就是矩陣中最大的元素。
輸入和輸出
Input: A matrix of different numbers. 10 8 10 10 14 13 12 11 15 9 11 11 15 9 11 21 16 17 19 20 Output: The peak element of the matrix. Here the peak element is: 21
演算法
findMaxMid(rows, mid, max)
輸入: 矩陣行數、中間行和一個輸出引數的最大元素。
輸出: 更新最大元素及其索引。
Begin maxIndex := 0 for all rows r in the matrix, do if max < matrix[i, mid], then max = matrix[i, mid], maxIndex := r done return maxIndex End
findPeakElement(rows, columns, mid)
輸入 − 矩陣的行和列,以及中間行位置。
輸出 − 矩陣中的峰值元素。
Begin maxMid := 0 maxMidIndex := findMaxMid(rows, mid, maxMid) if mid is first or last column, then return maxMid if maxMid>= item of previous and next row for mid column, then return maxMid if maxMid is less than its left element, then res := findPeakElement(rows, columns, mid – mid/2) return res if maxMid is less than its right element, then res := findPeakElement(rows, columns, mid + mid/2) return res End
示例
#include<iostream> #define M 4 #define N 4 using namespace std; intarr[M][N] = { {10, 8, 10, 10}, {14, 13, 12, 11}, {15, 9, 11, 21}, {16, 17, 19, 20} }; intfindMaxMid(int rows, int mid, int&max) { intmaxIndex = 0; for (int i = 0; i < rows; i++) { //find max element in the mid column if (max <arr[i][mid]) { max = arr[i][mid]; maxIndex = i; } } return maxIndex; } intfindPeakElement(int rows, int columns, int mid) { intmaxMid = 0; intmaxMidIndex = findMaxMid(rows, mid, maxMid); if (mid == 0 || mid == columns-1) //for first and last column, the maxMid is maximum return maxMid; // If maxMid is also peak if (maxMid>= arr[maxMidIndex][mid-1] &&maxMid>= arr[maxMidIndex][mid+1]) return maxMid; if (maxMid<arr[maxMidIndex][mid-1]) // If maxMid is less than its left element return findPeakElement(rows, columns, mid - mid/2); return findPeakElement(rows, columns, mid+mid/2); } int main() { int row = 4, col = 4; cout<< "The peak element is: "<<findPeakElement(row, col, col/2); }
輸出
The peak element is: 21
廣告