在 NumPy 中逐元素計算一維陣列和二維陣列的按位異或
要逐元素計算一維陣列和二維陣列的按位異或,請在 Python NumPy 中使用 **numpy.bitwise_xor()** 方法。
計算輸入陣列中整數的底層二進位制表示的按位異或。此 ufunc 實現 C/Python 運算子 ^。
第一個和第二個引數是陣列,只處理整數和布林型別。如果 x1.shape != x2.shape,則它們必須能夠廣播到公共形狀。
步驟
首先,匯入所需的庫:
import numpy as np
使用 array() 方法建立兩個 NumPy 陣列。我們插入了 int 型別的元素:
arr1 = np.array([32, 95, 82, 69, 38, 49]) arr2 = np.array([[28, 60, 81, 55, 89, 43]])
顯示陣列:
print("Array 1...
", arr1)
print("
Array 2...
", arr2)獲取陣列的型別:
print("
Our Array 1 type...
", arr1.dtype)
print("
Our Array 2 type...
", arr2.dtype)獲取陣列的維度:
print("
Our Array 1 Dimensions...
",arr1.ndim)
print("
Our Array 2 Dimensions...
",arr2.ndim)獲取陣列的形狀:
print("
Our Array 1 Shape...
",arr1.shape)
print("
Our Array 2 Shape...
",arr2.shape)要逐元素計算一維陣列和二維陣列的按位異或,請使用 numpy.bitwise_xor() 方法:
print("
Result...
",np.bitwise_xor(arr1, arr2))
示例
import numpy as np
# Creating two numpy arrays using the array() method
# We have inserted elements of int type
arr1 = np.array([32, 95, 82, 69, 38, 49])
arr2 = np.array([[28, 60, 81, 55, 89, 43]])
# Display the arrays
print("Array 1...
", arr1)
print("
Array 2...
", arr2)
# Get the type of the arrays
print("
Our Array 1 type...
", arr1.dtype)
print("
Our Array 2 type...
", arr2.dtype)
# Get the dimensions of the Arrays
print("
Our Array 1 Dimensions...
",arr1.ndim)
print("
Our Array 2 Dimensions...
",arr2.ndim)
# Get the shape of the Arrays
print("
Our Array 1 Shape...
",arr1.shape)
print("
Our Array 2 Shape...
",arr2.shape)
# To compute the bit-wise XOR of two arrays element-wise, use the numpy.bitwise_xor() method in Python Numpy
print("
Result...
",np.bitwise_xor(arr1, arr2))輸出
Array 1... [32 95 82 69 38 49] Array 2... [[28 60 81 55 89 43]] Our Array 1 type... int64 Our Array 2 type... int64 Our Array 1 Dimensions... 1 Our Array 2 Dimensions... 2 Our Array 1 Shape... (6,) Our Array 2 Shape... (1, 6) Result... [[ 60 99 3 114 127 26]]
廣告
資料結構
網路
關係資料庫管理系統 (RDBMS)
作業系統
Java
iOS
HTML
CSS
Android
Python
C 程式設計
C++
C#
MongoDB
MySQL
Javascript
PHP