使用遺傳演算法解決旅行商問題
旅行商問題 (TSP) 旨在找到連線一系列城市並返回起點的最短路徑。由於其組合性質以及隨著城市數量增加而呈指數級增長的路徑數量,這是一個難題。遺傳演算法 (GA) 是一種受遺傳學啟發的啟發式演算法。它模擬自然選擇來有效地解決 TSP 問題。GA 使用路徑來表示城市巡遊的候選方案。選擇、交叉和變異在 GA 中進化種群。選擇偏向適應性更高的路徑,這表示其質量或接近理想解的程度。變異引入隨機修改以探索新的解空間,而交叉則混合來自父路徑的遺傳資訊以產生子代。
使用的方法
遺傳演算法
遺傳演算法
強大的啟發式遺傳演算法 (GA) 受到自然選擇和遺傳學的啟發。它模仿進化來有效地解決 TSP 問題。GA 中的每條路徑都是一個可能的解決方案。適應度決定了路徑的質量和最優性。GA 透過選擇、交叉和變異適應度值較高的路徑來發展新的種群。
演算法
定義城市、最大世代數、種群大小和變異率。
定義一個城市結構,包含 x 和 y 座標。
定義一個路徑結構,包含城市索引向量(路徑)和適應度值。
建立一個使用座標確定城市距離的方法。
建立一個透過交換城市索引來建立隨機路徑的函式。
建立一個對城市距離求和以計算路徑適應度的函式。
建立一個將兩條父路徑交叉以建立子路徑的函式。
透過基於變異率的函式交換城市來變異路徑。
實現一個基於適應度的路徑查詢工具。
示例
#include <iostream> #include <vector> #include <algorithm> #include <random> using namespace std; // Define the number of cities const int NUM_CITIES = 5; // Define the maximum generations for the GA const int MAX_GENERATIONS = 100; // Define the population size for the GA const int POPULATION_SIZE = 10; // Define the mutation rate for the GA const double MUTATION_RATE = 0.1; // Define a structure to represent a city struct City { int x; int y; }; // Define a structure to represent a route struct Route { vector<int> path; double fitness; }; // Calculate the distance between two cities double calculateDistance(const City& city1, const City& city2) { int dx = city1.x - city2.x; int dy = city1.y - city2.y; return sqrt(dx*dx + dy*dy); } // Generate a random route Route generateRandomRoute() { Route route; for (int i = 0; i < NUM_CITIES; ++i) { route.path.push_back(i); } random_shuffle(route.path.begin(), route.path.end()); return route; } // Calculate the fitness of a route (smaller distance is better) void calculateFitness(Route& route, const vector<City>& cities) { double totalDistance = 0.0; for (int i = 0; i < NUM_CITIES - 1; ++i) { int cityIndex1 = route.path[i]; int cityIndex2 = route.path[i+1]; totalDistance += calculateDistance(cities[cityIndex1], cities[cityIndex2]); } // Add distance from last city back to the starting city int lastCityIndex = route.path[NUM_CITIES - 1]; totalDistance += calculateDistance(cities[lastCityIndex], cities[route.path[0]]); route.fitness = totalDistance; } // Perform crossover between two parent routes to produce a child route Route crossover(const Route& parent1, const Route& parent2) { Route child; int startPos = rand() % NUM_CITIES; int endPos = rand() % NUM_CITIES; for (int i = 0; i < NUM_CITIES; ++i) { if (startPos < endPos && i > startPos && i < endPos) { child.path.push_back(parent1.path[i]); } else if (startPos > endPos && !(i < startPos && i > endPos)) { child.path.push_back(parent1.path[i]); } else { child.path.push_back(-1); } } for (int i = 0; i < NUM_CITIES; ++i) { if (find(child.path.begin(), child.path.end(), parent2.path[i]) == child.path.end()) { for (int j = 0; j < NUM_CITIES; ++j) { if (child.path[j] == -1) { child.path[j] = parent2.path[i]; break; } } } } return child; } // Mutate a route by swapping two cities void mutate(Route& route) { for (int i = 0; i < NUM_CITIES; ++i) { if ((double)rand() / RAND_MAX < MUTATION_RATE) { int swapIndex = rand() % NUM_CITIES; swap(route.path[i], route.path[swapIndex]); } } } // Find the best route in a population Route findBestRoute(const vector<Route>& population) { double bestFitness = numeric_limits<double>::max(); int bestIndex = -1; for (int i = 0; i < POPULATION_SIZE; ++i) { if (population[i].fitness < bestFitness) { bestFitness = population[i].fitness; bestIndex = i; } } return population[bestIndex]; } int main() { // Define the cities vector<City> cities = { {0, 0}, {1, 2}, {3, 1}, {4, 3}, {2, 4} }; // Initialize the population vector<Route> population; for (int i = 0; i < POPULATION_SIZE; ++i) { population.push_back(generateRandomRoute()); calculateFitness(population[i], cities); } // Perform the GA iterations for (int generation = 0; generation < MAX_GENERATIONS; ++generation) { vector<Route> newPopulation; // Generate offspring through selection, crossover, and mutation for (int i = 0; i < POPULATION_SIZE; ++i) { Route parent1 = findBestRoute(population); Route parent2 = findBestRoute(population); Route child = crossover(parent1, parent2); mutate(child); calculateFitness(child, cities); newPopulation.push_back(child); } // Replace the old population with the new population population = newPopulation; } // Find the best route Route bestRoute = findBestRoute(population); // Print the best route cout << "Best Route: "; for (int i = 0; i < NUM_CITIES; ++i) { cout << bestRoute.path[i] << " "; } cout << endl; // Print the total distance of the best route cout << "Total Distance: " << bestRoute.fitness << endl; return 0; }
輸出
Best Route: 2 3 4 1 0 Total Distance: 12.1065
結論
最後,遺傳演算法 (GA) 可以解決旅行商問題 (TSP) 和其他組合最佳化問題。GA 迭代地搜尋可行解的廣闊搜尋空間,利用遺傳學和進化概念改進路徑適應度並找到一個良好的解。GA 對 TSP 的處理平衡了探索和利用。透過選擇、交叉和變異,GA 促進了更好路徑的發展並保持種群多樣性。GA 可以有效地搜尋解空間並避免區域性最優解。
廣告