兩個重疊矩形的總面積
重疊區域是兩個物體共享的區域。對於矩形來說,它是屬於兩個矩形的區域。為了找到兩個重疊矩形的總面積,首先我們需要分別新增兩個矩形的面積,但在這個總數中,重疊區域被計算了兩次。因此,我們也需要減去重疊區域。
問題陳述
給定兩個矩形的左下和右上頂點。找到這兩個矩形覆蓋的總面積。
示例1
輸入
bl_x1 = 0 bl_y1 = 0 tr_x1 = 5 tr_y1 = 5 bl_x2 = 3 bl_y2 = 3 tr_x2 = 8 tr_y2 = 8
輸出
46
解釋
Area of rectangle1 = (5 - 0) * (5 - 0) = 25 Area of rectangle2 = (8 - 3) * (8 - 3) = 25 Overlapping area = 4 Total area = 25 + 25 - 4 = 46
示例2
輸入
bl_x1 = -5 bl_y1 = -5 tr_x1 = 2 tr_y1 = 2 bl_x2 = 4 bl_y2 = 4 tr_x2 = 2 tr_y2 = 2
輸出
53
解釋
Area of rectangle1 = (-5 - 2) * (-5 - 2) = 49 Area of rectangle2 = (4 - 2) * (4 - 2) = 4 Overlapping area = 0 Total area = 49 + 4 - 0 =53
方法1:暴力法
在這種方法中,我們分別找到兩個矩形的面積和重疊面積。兩個矩形的面積可以透過矩形給出的座標找到。為了找到重疊面積,我們找到重疊區域的交點,然後計算面積。
虛擬碼
procedure overlapArea (rect1[], rect2[]) x = max(0, min(rect1[2], rect2[2]) - max(rect1[0], rect2[0])) y = max(0, min(rect1[3], rect2[3]) - max(rect1[1], rect2[1])) ans = x * y end procedure procedure totalArea (rect1[], rect2[]) area1 = rect1[2] - rect1[0]) * abs(rect1[3] - rect1[1] area2 = rect2[2] - rect2[0]) * abs(rect2[3] - rect2[1] overlap = overlapArea(rect1, rect2) ans = area1 + area2 - overlap end procedure
示例:C++ 實現
在下面的程式中,找到矩形的面積和重疊面積以獲得總面積。
#include <bits/stdc++.h>
using namespace std;
// Function to calculate the overlapping area
int overlapArea(int rect1[], int rect2[]){
//Finding the length and width of the overlap area
int x = max(0, min(rect1[2], rect2[2]) - max(rect1[0], rect2[0]));
int y = max(0, min(rect1[3], rect2[3]) - max(rect1[1], rect2[1]));
int area = x * y;
return area;
}
// Function to calculate the total area of two rectangles
int totalArea(int rect1[], int rect2[]){
// Area of rectangle 1
int area1 = abs(rect1[2] - rect1[0]) * abs(rect1[3] - rect1[1]);
// Area of rectangle 2
int area2 = abs(rect2[2] - rect2[0]) * abs(rect2[3] - rect2[1]);
int overlap = overlapArea(rect1, rect2);
// Total area is the area of two rectangles minus the common overlap area
int total = area1 + area2 - overlap;
return total;
}
int main(){
int rect1[4] = {0, 0, 5, 5}, rect2[4] = {3, 3, 8, 8};
cout << "Total area = " << totalArea(rect1, rect2);
return 0;
}
輸出
Total area = 46
方法2:確認重疊
為了減少矩形不重疊的情況下的計算工作,我們可以首先確認矩形是否重疊,然後計算重疊面積。
虛擬碼
procedure overlapArea (rect1[], rect2[])
x = max(0, min(rect1[2], rect2[2]) - max(rect1[0], rect2[0]))
y = max(0, min(rect1[3], rect2[3]) - max(rect1[1], rect2[1]))
ans = x * y
end procedure
procedure totalArea (rect1[], rect2[])
area1 = rect1[2] - rect1[0]) * abs(rect1[3] - rect1[1]
area2 = rect2[2] - rect2[0]) * abs(rect2[3] - rect2[1]
if no overlap
ans = area1 + area2
else
overlap = overlapArea(rect1, rect2)
ans = area1 + area2 - overlap
end procedure
示例:C++ 實現
在下面的程式中,我們首先檢查矩形是否重疊,然後相應地計算重疊面積。
#include <bits/stdc++.h>
using namespace std;
// Function to calculate the overlapping area
int overlapArea(int rect1[], int rect2[]){
//Finding the length and width of overlap area
int x = max(0, min(rect1[2], rect2[2]) - max(rect1[0], rect2[0]));
int y = max(0, min(rect1[3], rect2[3]) - max(rect1[1], rect2[1]));
int area = x * y;
return area;
}
int totalArea(int rect1[], int rect2[]){
int area1 = abs(rect1[2] - rect1[0]) * abs(rect1[3] - rect1[1]);
int area2 = abs(rect2[2] - rect2[0]) * abs(rect2[3] - rect2[1]);
// Checking for overlap
if (rect1[0] > rect2[2] || rect2[0] > rect1[2] || rect1[1] > rect2[3] || rect2[1] > rect1[3]) {
// No overlap
return area1 + area2;
} else {
// Overlap
int overlap = overlapArea(rect1, rect2);
return area1 + area2 - overlap;
}
}
int main(){
int rect1[4] = {0, 0, 5, 5}, rect2[4] = {6, 6, 8, 8};
cout << "Total area = " << totalArea(rect1, rect2);
return 0;
}
輸出
Total area = 29
方法3:面向物件程式設計
在這種方法中,我們將矩形表示為物件,並將它們的面積和重疊面積計算作為這些物件的方法。這種方法使程式碼更易讀、可重用和高效。
虛擬碼
Define Rectangle Class Define Rectangle Define area() Define overlapArea() Define totalArea()
示例:C++ 實現
在下面的程式中,我們使用 OOPs 的概念來建立矩形類及其方法。
#include <bits/stdc++.h>
using namespace std;
class Rectangle{
public:
int x1, y1, x2, y2;
Rectangle(int x1, int y1, int x2, int y2){
this->x1 = x1;
this->y1 = y1;
this->x2 = x2;
this->y2 = y2;
}
int area(){
return abs(x2 - x1) * abs(y2 - y1);
}
int overlapArea(Rectangle second){
int x = max(0, min(x2, second.x2) - max(x1, second.x1));
int y = max(0, min(y2, second.y2) - max(y1, second.y1));
int area = x * y;
return area;
}
int totalArea(Rectangle second){
int overlap = overlapArea(second);
int total = area() + second.area() - overlap;
return total;
}
};
int main(){
Rectangle rect1(1, 1, 5, 5);
Rectangle rect2(3, 3, 6, 6);
std::cout << "Total area = " << rect1.totalArea(rect2);
return 0;
}
輸出
Total area = 21
結論
總之,為了找到重疊矩形的總面積,我們討論了暴力法和其他一些最佳化方法來增強使用者友好性。每種方法的時間和空間複雜度都是 O(1)。
廣告
資料結構
網路
關係資料庫管理系統 (RDBMS)
作業系統
Java
iOS
HTML
CSS
Android
Python
C語言程式設計
C++
C#
MongoDB
MySQL
Javascript
PHP