在 Python 中求解張量方程


要解決張量方程,請在 Python 中使用 numpy.linalg.tensorsolve() 方法。假設 x 的所有索引都在乘積中累加,以及 a 最右邊的索引,就像在例如 tensordot(a, x, axes=b.ndim) 中一樣。

第一個引數 a 是一個係數張量,形狀為 b.shape + Q。Q 是一個元組,等於由 a 的適當數量的最右邊索引組成的子張量的形狀,並且必須滿足 prod(Q) == prod(b.shape)。第二個引數 b 是一個右手張量,可以是任何形狀。第三個引數 axis 是 a 中要重新排序到右側的軸,在求逆之前。如果為 None(預設值),則不執行重新排序。

步驟

首先,匯入所需的庫 -

import numpy as np

使用 array() 方法建立兩個 NumPy 陣列

arr1 = np.eye(2*3*4)
arr1.shape = (2*3, 4, 2, 3, 4)

arr2 = np.random.randn(2*3, 4)

顯示陣列 -

print("Array1...\n",arr1)
print("\nArray2...\n",arr2)

檢查兩個陣列的維度 -

print("\nDimensions of Array1...\n",arr1.ndim)
print("\nDimensions of Array2...\n",arr2.ndim)

檢查兩個陣列的形狀 -

print("\nShape of Array1...\n",arr1.shape)
print("\nShape of Array2...\n",arr2.shape)

要解決張量方程,請在 Python 中使用 numpy.linalg.tensorsolve() 方法。假設 x 的所有索引都在乘積中累加,以及 a 最右邊的索引,就像在例如 tensordot(a, x, axes=b.ndim) 中一樣 -

print("\nResult...\n",np.linalg.tensorsolve(arr1, arr2))

示例

import numpy as np

# Creating two numpy arrays using the array() method
arr1 = np.eye(2*3*4)
arr1.shape = (2*3, 4, 2, 3, 4)
arr2 = np.random.randn(2*3, 4)

# Display the arrays
print("Array1...\n",arr1)
print("\nArray2...\n",arr2)

# Check the Dimensions of both the arrays
print("\nDimensions of Array1...\n",arr1.ndim)
print("\nDimensions of Array2...\n",arr2.ndim)

# Check the Shape of both the arrays
print("\nShape of Array1...\n",arr1.shape)
print("\nShape of Array2...\n",arr2.shape)

# To solve the tensor equation, use the numpy.linalg.tensorsolve() method in Python.
print("\nResult...\n",np.linalg.tensorsolve(arr1, arr2))

輸出

Array1...
[[[[[1. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]]


[[[0. 1. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]]


[[[0. 0. 1. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]]


[[[0. 0. 0. 1.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]]]



[[[[0. 0. 0. 0.]
[1. 0. 0. 0.]
[0. 0. 0. 0.]]

[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]]


[[[0. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. 0. 0.]]

[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]]


[[[0. 0. 0. 0.]
[0. 0. 1. 0.]
[0. 0. 0. 0.]]

[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]]


[[[0. 0. 0. 0.]
[0. 0. 0. 1.]
[0. 0. 0. 0.]]

[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]]]



[[[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[1. 0. 0. 0.]]

[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]]


[[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 1. 0. 0.]]

[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]]


[[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 1. 0.]]

[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]]


[[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 1.]]

[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]]]



[[[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

[[1. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]]


[[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

[[0. 1. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]]


[[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

[[0. 0. 1. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]]


[[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

[[0. 0. 0. 1.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]]]



[[[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

[[0. 0. 0. 0.]
[1. 0. 0. 0.]
[0. 0. 0. 0.]]]


[[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

[[0. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. 0. 0.]]]


[[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

[[0. 0. 0. 0.]
[0. 0. 1. 0.]
[0. 0. 0. 0.]]]


[[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

[[0. 0. 0. 0.]
[0. 0. 0. 1.]
[0. 0. 0. 0.]]]]



[[[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[1. 0. 0. 0.]]]


[[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 1. 0. 0.]]]


[[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 1. 0.]]]


[[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 1.]]]]]

Array2...
[[ 0.31376716 0.63443741 0.58628101 0.62313096]
[ 1.12528958 -1.18403238 -0.64663325 -0.24241201]
[ 0.55598965 -2.00059925 -1.97946414 -1.72478953]
[ 0.18976226 0.60572953 1.50157692 -2.4491463 ]
[ 0.42461806 -2.17872016 0.49677904 -1.11634625]
[-1.09074462 0.35475618 0.42474987 -1.34391368]]

Dimensions of Array1...
5

Dimensions of Array2...
2

Shape of Array1...
(6, 4, 2, 3, 4)

Shape of Array2...
(6, 4)

Result...
[[[ 0.31376716 0.63443741 0.58628101 0.62313096]
[ 1.12528958 -1.18403238 -0.64663325 -0.24241201]
[ 0.55598965 -2.00059925 -1.97946414 -1.72478953]]

[[ 0.18976226 0.60572953 1.50157692 -2.4491463 ]
[ 0.42461806 -2.17872016 0.49677904 -1.11634625]
[-1.09074462 0.35475618 0.42474987 -1.34391368]]]

更新於: 2022年2月25日

594 次檢視

開啟你的 職業生涯

透過完成課程獲得認證

開始學習
廣告

© . All rights reserved.