如果兩個NumPy陣列在容差範圍內逐元素相等,則返回True


要在給定容差範圍內判斷兩個陣列是否逐元素相等並返回True,請使用Python NumPy中的**ma.allclose()**方法。此函式等效於allclose,不同之處在於,根據masked_equal引數,掩碼值被視為相等(預設)或不相等。“masked_values”引數用於設定兩個陣列中的掩碼值是否被認為相等(True)或不相等(False)。

如果兩個陣列在給定容差範圍內相等,則返回True,否則返回False。如果任一陣列包含NaN,則返回False。

掩碼陣列是標準numpy.ndarray和掩碼的組合。掩碼要麼是nomask,表示關聯陣列的沒有任何值無效,要麼是一個布林陣列,它決定關聯陣列的每個元素的值是否有效。

步驟

首先,匯入所需的庫:

import numpy as np

使用numpy.arange()方法建立一個包含整數元素的3x3陣列:

arr1 = np.arange(9).reshape((3,3))
print("Array1...
", arr1) print("
Array type...
", arr1.dtype)

建立掩碼陣列1:

arr1 = ma.array(arr1)

掩碼陣列1:

arr1[0, 1] = ma.masked
arr1[1, 1] = ma.masked

顯示掩碼陣列1:

print("
Masked Array1...
",arr1)

使用numpy.arange()方法建立另一個包含整數元素的3x3陣列:

arr2 = np.arange(9).reshape((3,3))
print("
Array2...
", arr2) print("
Array type...
", arr2.dtype)

建立掩碼陣列2:

arr2 = ma.array(arr2)

掩碼陣列2:

arr2[2, 0] = ma.masked
arr2[2, 2] = ma.masked

顯示掩碼陣列2:

print("
Masked Array2...
",arr2)

要在給定容差範圍內判斷兩個陣列是否逐元素相等並返回True,請使用Python NumPy中的ma.allclose()方法:

print("
Result...
",ma.allclose(arr1, arr2))

示例

import numpy as np
import numpy.ma as ma

# Array 1
# Creating a 3x3 array with int elements using the numpy.arange() method
arr1 = np.arange(9).reshape((3,3))
print("Array1...
", arr1) print("
Array type...
", arr1.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr1.ndim) # Get the shape of the Array print("
Our Array Shape...
",arr1.shape) # Get the number of elements of the Array print("
Elements in the Array...
",arr1.size) # Create a masked array arr1 = ma.array(arr1) # Mask Array1 arr1[0, 1] = ma.masked arr1[1, 1] = ma.masked # Display Masked Array 1 print("
Masked Array1...
",arr1) # Array 2 # Creating another 3x3 array with int elements using the numpy.arange() method arr2 = np.arange(9).reshape((3,3)) print("
Array2...
", arr2) print("
Array type...
", arr2.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr2.ndim) # Get the shape of the Array print("
Our Array Shape...
",arr2.shape) # Get the number of elements of the Array print("
Elements in the Array...
",arr2.size) # Create a masked array arr2 = ma.array(arr2) # Mask Array2 arr2[2, 0] = ma.masked arr2[2, 2] = ma.masked # Display Masked Array 2 print("
Masked Array2...
",arr2) # To Return True if two arrays are element-wise equal within a tolerance, use the ma.allclose() method in Python Numpy print("
Result...
",ma.allclose(arr1, arr2))

輸出

Array1...
[[0 1 2]
[3 4 5]
[6 7 8]]

Array type...
int64

Array Dimensions...
2

Our Array Shape...
(3, 3)

Elements in the Array...
9

Masked Array1...
[[0 -- 2]
[3 -- 5]
[6 7 8]]

Array2...
[[0 1 2]
[3 4 5]
[6 7 8]]

Array type...
int64

Array Dimensions...
2

Our Array Shape...
(3, 3)

Elements in the Array...
9

Masked Array2...
[[0 1 2]
[3 4 5]
[-- 7 --]]

Result...
True

更新於:2022年2月18日

316 次瀏覽

啟動您的職業生涯

完成課程獲得認證

開始學習
廣告