Python - 選擇具有特定資料型別的列


要選擇具有特定資料型別的列,請使用select_dtypes() 方法和 include 引數。首先,建立一個包含 2 列的 DataFrame −

dataFrame = pd.DataFrame(
   {
      "Student": ['Jack', 'Robin', 'Ted', 'Marc', 'Scarlett', 'Kat', 'John'],"Roll Number": [ 5, 10, 3, 8, 2, 9, 6]
   }
)

現在,選擇具有各自特定資料型別的 2 列 −

column1 = dataFrame.select_dtypes(include=['object']).columns
column2 = dataFrame.select_dtypes(include=['int64']).columns

示例

以下是程式碼 −

import pandas as pd

# Create DataFrame
dataFrame = pd.DataFrame(
   {
      "Student": ['Jack', 'Robin', 'Ted', 'Marc', 'Scarlett', 'Kat', 'John'],"Roll Number": [ 5, 10, 3, 8, 2, 9, 6]
   }
)

print"DataFrame ...\n",dataFrame

print"\nInfo of the entire dataframe:\n"

# get the description
print(dataFrame.info())

# select columns with specific datatype
column1 = dataFrame.select_dtypes(include=['object']).columns
column2 = dataFrame.select_dtypes(include=['int64']).columns

print"Column 1 with object type = ",column1
print"Column 2 with int64 type = ",column2

輸出

這將產生以下輸出 −

DataFrame ...
   Roll Number   Student
0            5      Jack
1           10     Robin
2            3       Ted
3            8      Marc
4            2  Scarlett
5            9       Kat
6            6      John

Info of the entire dataframe:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7 entries, 0 to 6
Data columns (total 2 columns):
Roll Number    7  non-null int64
Student        7  non-null object
dtypes: int64(1), object(1)
memory usage: 184.0+ bytes
None
Column 1 with object type = Index([u'Student'], dtype='object')
Column 2 with int64 type = Index([u'Roll Number'], dtype='object')

更新於: 21-9-2021

148 次瀏覽

開啟你的 職業生涯

透過完成課程獲得認證

開始
廣告
© . All rights reserved.