C++ 中連續整數流中的中位數(連續的整數)
問題陳述
假設從資料流中讀取整數。以有效方式查詢迄今為止讀取的元素中位數
在讀取流的第 1 個元素 - 10 -> 中位數 - 10
在讀取流的第 2 個元素 - 10, 20 -> 中位數 - 15
在讀取流的第 3 個元素 - 10, 20, 30 -> 中位數 - 20,依此類推...
演算法
1. Use a max heap on left side to represent elements that are less than effective median, and a min heap on right side to represent elements that are greater than effective median 2. After processing an incoming element, the number of elements in heaps differ utmost by 1 element 3. When both heaps contain same number of elements, we pick average of heaps root data as effective median 4. When the heaps are not balanced, we select effective median from the root of heap containing more elements
範例
#include <iostream>
using namespace std;
#define MAX_HEAP_SIZE (128)
#define ARRAY_SIZE(a) sizeof(a)/sizeof(a[0])
inline void Exch(int &a, int &b){
int aux = a;
a = b;
b = aux;
}
bool Greater(int a, int b){
return a > b;
}
bool Smaller(int a, int b){
return a < b;
}
int Average(int a, int b){
return (a + b) / 2;
}
int Signum(int a, int b){
if( a == b ) {
return 0;
}
return a < b ? -1 : 1;
}
class Heap{
public:
Heap(int *b, bool (*c)(int, int)) : A(b), comp(c){
heapSize = -1;
}
virtual ~Heap(){
if( A ) {
delete[] A;
}
}
virtual bool Insert(int e) = 0;
virtual int GetTop() = 0;
virtual int ExtractTop() = 0;
virtual int GetCount() = 0;
protected:
int left(int i){
return 2 * i + 1;
}
int right(int i){
return 2 * (i + 1);
}
int parent(int i){
if( i <= 0 ) {
return -1;
}
return (i - 1)/2;
}
int *A;
bool (*comp)(int, int);
int heapSize;
int top(void){
int max = -1;
if( heapSize >= 0 ) {
max = A[0];
}
return max;
}
int count(){
return heapSize + 1;
}
void heapify(int i){
int p = parent(i);
if( p >= 0 && comp(A[i], A[p]) ) {
Exch(A[i], A[p]);
heapify(p);
}
}
int deleteTop(){
int del = -1;
if( heapSize > -1) {
del = A[0];
Exch(A[0], A[heapSize]);
heapSize--;
heapify(parent(heapSize+1));
}
return del;
}
bool insertHelper(int key){
bool ret = false;
if( heapSize < MAX_HEAP_SIZE ) {
ret = true;
heapSize++;
A[heapSize] = key;
heapify(heapSize);
}
return ret;
}
};
class MaxHeap : public Heap{
private:
public:
MaxHeap() : Heap(new int[MAX_HEAP_SIZE], &Greater) { }
~MaxHeap() { }
int GetTop(){
return top();
}
int ExtractTop(){
return deleteTop();
}
int GetCount(){
return count();
}
bool Insert(int key){
return insertHelper(key);
}
};
class MinHeap : public Heap{
private:
public:
MinHeap() : Heap(new int[MAX_HEAP_SIZE], &Smaller) { }
~MinHeap() { }
int GetTop(){
return top();
}
int ExtractTop(){
return deleteTop();
}
int GetCount(){
return count();
}
bool Insert(int key){
return insertHelper(key);
}
};
int getMedian(int e, int &m, Heap &l, Heap &r){
int sig = Signum(l.GetCount(), r.GetCount());
switch(sig){
case 1:
if( e < m ) {
r.Insert(l.ExtractTop());
l.Insert(e);
} else {
r.Insert(e);
}
m = Average(l.GetTop(), r.GetTop());
break;
case 0:
if( e < m ) {
l.Insert(e);
m = l.GetTop();
} else {
r.Insert(e);
m = r.GetTop();
}
break;
case -1:
if( e < m ) {
l.Insert(e);
} else {
l.Insert(r.ExtractTop());
r.Insert(e);
}
m = Average(l.GetTop(), r.GetTop());
break;
}
return m;
}
void printMedian(int A[], int size){
int m = 0;
Heap *left = new MaxHeap();
Heap *right = new MinHeap();
for(int i = 0; i < size; ++i) {
m = getMedian(A[i], m, *left, *right);
cout << m << endl;
}
delete left;
delete right;
}
// Driver code
int main(){
int A[] = {10, 20, 30};
int size = ARRAY_SIZE(A);
cout "Result:\n";
printMedian(A, size);
return 0;
}輸出
當你編譯並執行上述程式時它會生成以下輸出 −
Result: 10 15 20
廣告
資料結構
網路
RDBMS
作業系統
Java
iOS
HTML
CSS
Android
Python
C 程式設計
C++
C#
MongoDB
MySQL
Javascript
PHP