如何在 R 資料框中使用兩個因子列查詢累積和?
通常,累積和是針對單個變數計算的,在某些情況下,基於單個分類變數,很少有情況我們需要針對兩個分類變數進行計算。如果我們想要針對兩個分類變數查詢累積和,則需要將資料框轉換為 data.table 物件,並使用 cumsum 函式定義包含累積和的列。
示例
考慮以下資料框
> set.seed(1361)
> Factor1<-as.factor(sample(LETTERS[1:4],20,replace=TRUE))
> Factor2<-as.factor(sample(c("T1","T2","T3","T4"),20,replace=TRUE))
> Response<-rpois(20,5)
> df1<-data.frame(Factor1,Factor2,Response)
> df1輸出
Factor1 Factor2 Response 1 A T2 9 2 B T1 8 3 B T1 2 4 A T2 3 5 B T1 7 6 B T2 7 7 D T2 7 8 D T4 7 9 C T4 6 10 B T1 6 11 A T2 4 12 A T2 4 13 C T1 7 14 B T3 1 15 A T3 6 16 D T1 3 17 B T1 8 18 D T4 5 19 D T2 3 20 C T1 4
載入 data.table 包
> library(data.table)
將資料框 df1 轉換為 data.table 物件
> dt1<-data.table(df1)
基於 Factor1 和 Factor2 建立一個名為 CumulativeSums 的列,其中包含累積和
示例
> dt1[,CumulativeSums:=cumsum(Response),by=list(Factor1,Factor2)] > dt1
輸出
Factor1 Factor2 Response CumulativeSums 1: A T2 9 9 2: B T1 8 8 3: B T1 2 10 4: A T2 3 12 5: B T1 7 17 6: B T2 7 7 7: D T2 7 7 8: D T4 7 7 9: C T4 6 6 10: B T1 6 23 11: A T2 4 16 12: A T2 4 20 13: C T1 7 7 14: B T3 1 1 15: A T3 6 6 16: D T1 3 3 17: B T1 8 31 18: D T4 5 12 19: D T2 3 10 20: C T1 4 11
讓我們看看另一個例子
示例
> G1<-as.factor(sample(c("Hot","Cold"),20,replace=TRUE))
> G2<-as.factor(sample(c("Low","Medium","Large"),20,replace=TRUE))
> Y<-sample(1:100,20)
> df2<-data.frame(G1,G2,Y)
> df2輸出
G1 G2 Y 1 Hot Medium 60 2 Cold Low 94 3 Hot Low 22 4 Cold Medium 90 5 Hot Medium 16 6 Hot Large 32 7 Cold Low 44 8 Hot Low 73 9 Hot Medium 99 10 Hot Medium 68 11 Cold Medium 41 12 Cold Large 77 13 Cold Large 48 14 Cold Medium 20 15 Cold Medium 18 16 Cold Low 12 17 Cold Low 30 18 Hot Low 23 19 Cold Medium 26 20 Cold Medium 4
示例
> dt2<-data.table(df2) > dt2[,CumulativeSums:=cumsum(Y),by=list(G1,G2)] > dt2
輸出
G1 G2 Y CumulativeSums 1: Hot Medium 60 60 2: Cold Low 94 94 3: Hot Low 22 22 4: Cold Medium 90 90 5: Hot Medium 16 76 6: Hot Large 32 32 7: Cold Low 44 138 8: Hot Low 73 95 9: Hot Medium 99 175 10: Hot Medium 68 243 11: Cold Medium 41 131 12: Cold Large 77 77 13: Cold Large 48 125 14: Cold Medium 20 151 15: Cold Medium 18 169 16: Cold Low 12 150 17: Cold Low 30 180 18: Hot Low 23 118 19: Cold Medium 26 195 20: Cold Medium 4 199
廣告
資料結構
網路
關係資料庫管理系統
作業系統
Java
iOS
HTML
CSS
Android
Python
C 程式設計
C++
C#
MongoDB
MySQL
Javascript
PHP