如何在 R 中按行建立資料框值向量?
若要按行建立資料框值向量,我們可以在使用 t 轉置資料框之後使用 c 函式。例如,如果我們有一個包含許多列的資料框 df,則可以使用 c(t(df)) 將 df 值轉換成一個向量,這將按行列印資料框的值。
示例 1
set.seed(798) x1<−rnorm(20,5,2) x2<−rnorm(20,5,3) df1<−data.frame(x1,x2) df1
輸出
x1 x2 1 2.786103 −3.098242 2 8.533086 5.943967 3 10.291147 5.841057 4 5.449163 3.989173 5 5.810170 6.463880 6 4.479613 8.594108 7 7.569711 2.420207 8 8.058095 4.875600 9 3.827098 5.239763 10 5.807293 6.416752 11 4.431298 5.827411 12 4.140034 4.705993 13 6.643332 1.450062 14 1.787068 11.405792 15 5.356992 5.258035 16 5.027659 6.665030 17 3.617873 4.955072 18 8.190755 2.514271 19 4.675561 6.849762 20 10.532212 6.050328 Vector_df1<−c(t(df1)) Vector_df1 [1] 2.786103 −3.098242 8.533086 5.943967 10.291147 5.841057 5.449163 [8] 3.989173 5.810170 6.463880 4.479613 8.594108 7.569711 2.420207 [15] 8.058095 4.875600 3.827098 5.239763 5.807293 6.416752 4.431298 [22] 5.827411 4.140034 4.705993 6.643332 1.450062 1.787068 11.405792 [29] 5.356992 5.258035 5.027659 6.665030 3.617873 4.955072 8.190755 [36] 2.514271 4.675561 6.849762 10.532212 6.050328 is.vector(Vector_df1) [1] TRUE
示例 2
y1<−rpois(20,10) y2<−rpois(20,5) y3<−rpois(20,3) df2<−data.frame(y1,y2,y3) df2
輸出
y1 y2 y3 1 6 7 1 2 7 7 4 3 16 6 3 4 12 4 4 5 9 4 3 6 10 3 4 7 8 4 1 8 12 4 0 9 9 4 4 10 15 4 5 11 4 6 5 12 10 4 2 13 8 9 2 14 7 4 5 15 9 7 3 16 8 3 7 17 9 6 3 18 6 3 3 19 11 6 7 20 7 2 0 Vector_df2<−c(t(df2)) Vector_df2 [1] 6 7 1 7 7 4 16 6 3 12 4 4 9 4 3 10 3 4 8 4 1 12 4 0 9 [26] 4 4 15 4 5 4 6 5 10 4 2 8 9 2 7 4 5 9 7 3 8 3 7 9 6 [51] 3 6 3 3 11 6 7 7 2 0 is.vector(Vector_df2) [1] TRUE
示例 3
z1<−letters[1:20] z2<−rexp(20,1.98) z3<−runif(20,1,5) df3<−data.frame(z1,z2,z3) df3
輸出
z1 z2 z3 1 a 0.30649942 2.581508 2 b 0.49573688 1.005800 3 c 0.32632915 1.582261 4 d 0.16866850 2.364847 5 e 0.49920925 4.822604 6 f 0.48753521 2.516127 7 g 1.11453076 1.369764 8 h 0.03852521 3.055764 9 i 0.43320666 4.336745 10 j 1.53110506 1.253256 11 k 1.02885841 3.401008 12 l 0.93749136 1.272466 13 m 0.05544727 1.839311 14 n 0.06982751 3.857567 15 o 0.03554147 2.816643 16 p 0.27870340 4.920266 17 q 0.30576924 1.781030 18 r 0.13628651 2.365232 19 s 1.23068290 4.879601 20 t 0.31617628 1.026273 Vector_df3<−c(t(df3)) Vector_df3 [1] "a" "0.30649942" "2.581508" "b" "0.49573688" [6] "1.005800" "c" "0.32632915" "1.582261" "d" [11] "0.16866850" "2.364847" "e" "0.49920925" "4.822604" [16] "f" "0.48753521" "2.516127" "g" "1.11453076" [21] "1.369764" "h" "0.03852521" "3.055764" "i" [26] "0.43320666" "4.336745" "j" "1.53110506" "1.253256" [31] "k" "1.02885841" "3.401008" "l" "0.93749136" [36] "1.272466" "m" "0.05544727" "1.839311" "n" [41] "0.06982751" "3.857567" "o" "0.03554147" "2.816643" [46] "p" "0.27870340" "4.920266" "q" "0.30576924" [51] "1.781030" "r" "0.13628651" "2.365232" "s" [56] "1.23068290" "4.879601" "t" "0.31617628" "1.026273" is.vector(Vector_df3) [1] TRUE
廣告
資料結構
網路
RDBMS
作業系統
Java
iOS
HTML
CSS
Android
Python
C 程式設計
C++
C#
MongoDB
MySQL
Javascript
PHP