如何在Python中使用TensorFlow定義損失函式、最佳化器、訓練模型並在IMDB資料集上評估模型?
Tensorflow是谷歌提供的機器學習框架。它是一個開源框架,與Python結合使用,可以實現演算法、深度學習應用等等。它用於研究和生產目的。
可以使用以下程式碼行在Windows上安裝“tensorflow”包:
pip install tensorflow
“IMDB”資料集包含超過5萬部電影的評論。此資料集通常與自然語言處理相關的操作一起使用。
我們使用Google Colaboratory執行以下程式碼。Google Colab或Colaboratory幫助在瀏覽器上執行Python程式碼,無需任何配置,並可免費訪問GPU(圖形處理單元)。Colaboratory構建在Jupyter Notebook之上。
以下是定義損失函式、最佳化器、訓練模型並在IMDB資料集上評估模型的程式碼片段:
model.compile(loss=losses.BinaryCrossentropy(from_logits=True),
optimizer='adam',
metrics=tf.metrics.BinaryAccuracy(threshold=0.0))
epochs = 10
history = model.fit(
train_ds,
validation_data=val_ds,
epochs=epochs)
loss, accuracy = model.evaluate(test_ds)
print("Loss is : ", loss)
print("Accuracy is : ", accuracy)程式碼來源 − https://www.tensorflow.org/tutorials/keras/text_classification
輸出
Epoch 1/10 625/625 [==============================] - 12s 19ms/step - loss: 0.6818 - binary_accuracy: 0.6130 - val_loss: 0.6135 - val_binary_accuracy: 0.7750 Epoch 2/10 625/625 [==============================] - 4s 7ms/step - loss: 0.5785 - binary_accuracy: 0.7853 - val_loss: 0.4971 - val_binary_accuracy: 0.8230 Epoch 3/10 625/625 [==============================] - 4s 7ms/step - loss: 0.4651 - binary_accuracy: 0.8372 - val_loss: 0.4193 - val_binary_accuracy: 0.8470 Epoch 4/10 625/625 [==============================] - 4s 7ms/step - loss: 0.3901 - binary_accuracy: 0.8635 - val_loss: 0.3732 - val_binary_accuracy: 0.8612 Epoch 5/10 625/625 [==============================] - 4s 7ms/step - loss: 0.3435 - binary_accuracy: 0.8771 - val_loss: 0.3444 - val_binary_accuracy: 0.8688 Epoch 6/10 625/625 [==============================] - 4s 7ms/step - loss: 0.3106 - binary_accuracy: 0.8877 - val_loss: 0.3255 - val_binary_accuracy: 0.8730 Epoch 7/10 625/625 [==============================] - 5s 7ms/step - loss: 0.2855 - binary_accuracy: 0.8970 - val_loss: 0.3119 - val_binary_accuracy: 0.8732 Epoch 8/10 625/625 [==============================] - 5s 7ms/step - loss: 0.2652 - binary_accuracy: 0.9048 - val_loss: 0.3027 - val_binary_accuracy: 0.8772 Epoch 9/10 625/625 [==============================] - 5s 7ms/step - loss: 0.2481 - binary_accuracy: 0.9125 - val_loss: 0.2959 - val_binary_accuracy: 0.8782 Epoch 10/10 625/625 [==============================] - 5s 7ms/step - loss: 0.2328 - binary_accuracy: 0.9161 - val_loss: 0.2913 - val_binary_accuracy: 0.8792 782/782 [==============================] - 10s 12ms/step - loss: 0.3099 - binary_accuracy: 0.8741 Loss is : 0.3099007308483124 Accuracy is : 0.8741199970245361
解釋
構建模型後,使用“compile”函式對其進行編譯。
此處定義的訓練模型的步驟數為10。
“fit”函式用於將資料擬合到已構建的模型。
“evaluate”函式用於計算模型在測試資料集上的損失和準確率。
損失和準確率的值顯示在控制檯上。
廣告
資料結構
網路
關係資料庫管理系統(RDBMS)
作業系統
Java
iOS
HTML
CSS
Android
Python
C語言程式設計
C++
C#
MongoDB
MySQL
Javascript
PHP